Properties

Label 2-735-1.1-c3-0-58
Degree $2$
Conductor $735$
Sign $1$
Analytic cond. $43.3664$
Root an. cond. $6.58531$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·2-s + 3·3-s + 17·4-s − 5·5-s + 15·6-s + 45·8-s + 9·9-s − 25·10-s + 12·11-s + 51·12-s − 30·13-s − 15·15-s + 89·16-s + 134·17-s + 45·18-s + 92·19-s − 85·20-s + 60·22-s + 112·23-s + 135·24-s + 25·25-s − 150·26-s + 27·27-s − 58·29-s − 75·30-s + 224·31-s + 85·32-s + ⋯
L(s)  = 1  + 1.76·2-s + 0.577·3-s + 17/8·4-s − 0.447·5-s + 1.02·6-s + 1.98·8-s + 1/3·9-s − 0.790·10-s + 0.328·11-s + 1.22·12-s − 0.640·13-s − 0.258·15-s + 1.39·16-s + 1.91·17-s + 0.589·18-s + 1.11·19-s − 0.950·20-s + 0.581·22-s + 1.01·23-s + 1.14·24-s + 1/5·25-s − 1.13·26-s + 0.192·27-s − 0.371·29-s − 0.456·30-s + 1.29·31-s + 0.469·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(735\)    =    \(3 \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(43.3664\)
Root analytic conductor: \(6.58531\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 735,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(7.585118889\)
\(L(\frac12)\) \(\approx\) \(7.585118889\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - p T \)
5 \( 1 + p T \)
7 \( 1 \)
good2 \( 1 - 5 T + p^{3} T^{2} \)
11 \( 1 - 12 T + p^{3} T^{2} \)
13 \( 1 + 30 T + p^{3} T^{2} \)
17 \( 1 - 134 T + p^{3} T^{2} \)
19 \( 1 - 92 T + p^{3} T^{2} \)
23 \( 1 - 112 T + p^{3} T^{2} \)
29 \( 1 + 2 p T + p^{3} T^{2} \)
31 \( 1 - 224 T + p^{3} T^{2} \)
37 \( 1 + 146 T + p^{3} T^{2} \)
41 \( 1 + 18 T + p^{3} T^{2} \)
43 \( 1 - 340 T + p^{3} T^{2} \)
47 \( 1 + 208 T + p^{3} T^{2} \)
53 \( 1 + 754 T + p^{3} T^{2} \)
59 \( 1 + 380 T + p^{3} T^{2} \)
61 \( 1 + 718 T + p^{3} T^{2} \)
67 \( 1 - 412 T + p^{3} T^{2} \)
71 \( 1 + 960 T + p^{3} T^{2} \)
73 \( 1 + 1066 T + p^{3} T^{2} \)
79 \( 1 - 896 T + p^{3} T^{2} \)
83 \( 1 + 436 T + p^{3} T^{2} \)
89 \( 1 - 1038 T + p^{3} T^{2} \)
97 \( 1 - 702 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.13782493954537041936852537377, −9.198840373065645582279772371736, −7.78606683291345362664398392121, −7.34010908234651063693470824190, −6.23742976955526156172638730779, −5.23983388549933116520512280298, −4.50436749000921993551687039077, −3.34606429040730818303481939033, −2.94180167768399390459546265050, −1.36050018965851097692471491156, 1.36050018965851097692471491156, 2.94180167768399390459546265050, 3.34606429040730818303481939033, 4.50436749000921993551687039077, 5.23983388549933116520512280298, 6.23742976955526156172638730779, 7.34010908234651063693470824190, 7.78606683291345362664398392121, 9.198840373065645582279772371736, 10.13782493954537041936852537377

Graph of the $Z$-function along the critical line