L(s) = 1 | + 3-s − 3·5-s − 2·7-s + 9-s + 7·11-s + 13-s − 3·15-s + 10·17-s − 13·19-s − 2·21-s − 3·23-s + 6·25-s − 27-s − 13·29-s + 8·31-s + 7·33-s + 6·35-s − 5·37-s + 39-s + 8·41-s + 24·43-s − 3·45-s − 2·47-s − 9·49-s + 10·51-s − 53-s − 21·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 1.34·5-s − 0.755·7-s + 1/3·9-s + 2.11·11-s + 0.277·13-s − 0.774·15-s + 2.42·17-s − 2.98·19-s − 0.436·21-s − 0.625·23-s + 6/5·25-s − 0.192·27-s − 2.41·29-s + 1.43·31-s + 1.21·33-s + 1.01·35-s − 0.821·37-s + 0.160·39-s + 1.24·41-s + 3.65·43-s − 0.447·45-s − 0.291·47-s − 9/7·49-s + 1.40·51-s − 0.137·53-s − 2.83·55-s + ⋯ |
Λ(s)=(=((218⋅53⋅233)s/2ΓC(s)3L(s)Λ(2−s)
Λ(s)=(=((218⋅53⋅233)s/2ΓC(s+1/2)3L(s)Λ(1−s)
Degree: |
6 |
Conductor: |
218⋅53⋅233
|
Sign: |
1
|
Analytic conductor: |
202985. |
Root analytic conductor: |
7.66615 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(6, 218⋅53⋅233, ( :1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.720488421 |
L(21) |
≈ |
2.720488421 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | C1 | (1+T)3 |
| 23 | C1 | (1+T)3 |
good | 3 | S4×C2 | 1−T+2T3−p2T5+p3T6 |
| 7 | S4×C2 | 1+2T+13T2+27T3+13pT4+2p2T5+p3T6 |
| 11 | S4×C2 | 1−7T+40T2−140T3+40pT4−7p2T5+p3T6 |
| 13 | S4×C2 | 1−T+16T2+24T3+16pT4−p2T5+p3T6 |
| 17 | S4×C2 | 1−10T+61T2−257T3+61pT4−10p2T5+p3T6 |
| 19 | S4×C2 | 1+13T+90T2+432T3+90pT4+13p2T5+p3T6 |
| 29 | S4×C2 | 1+13T+113T2+678T3+113pT4+13p2T5+p3T6 |
| 31 | S4×C2 | 1−8T+105T2−495T3+105pT4−8p2T5+p3T6 |
| 37 | S4×C2 | 1+5T+19T2−126T3+19pT4+5p2T5+p3T6 |
| 41 | S4×C2 | 1−8T+121T2−655T3+121pT4−8p2T5+p3T6 |
| 43 | C2 | (1−8T+pT2)3 |
| 47 | S4×C2 | 1+2T+49T2−212T3+49pT4+2p2T5+p3T6 |
| 53 | S4×C2 | 1+T+59T2+406T3+59pT4+p2T5+p3T6 |
| 59 | S4×C2 | 1+17T+243T2+2042T3+243pT4+17p2T5+p3T6 |
| 61 | S4×C2 | 1+13T+132T2+866T3+132pT4+13p2T5+p3T6 |
| 67 | S4×C2 | 1−5T+109T2−174T3+109pT4−5p2T5+p3T6 |
| 71 | S4×C2 | 1−22T+309T2−2899T3+309pT4−22p2T5+p3T6 |
| 73 | S4×C2 | 1−12T+43T2+368T3+43pT4−12p2T5+p3T6 |
| 79 | S4×C2 | 1−4T+93T2−120T3+93pT4−4p2T5+p3T6 |
| 83 | S4×C2 | 1+15T+289T2+2454T3+289pT4+15p2T5+p3T6 |
| 89 | S4×C2 | 1+8T+139T2+1360T3+139pT4+8p2T5+p3T6 |
| 97 | S4×C2 | 1+3T+210T2+632T3+210pT4+3p2T5+p3T6 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.81958857123440871293661366130, −6.65347211365554599901387542844, −6.56611384038250505653043893596, −6.54071180711964683928202502563, −6.06436684263477582493301994571, −5.77513251299169465228876921778, −5.74625787438582483704658803682, −5.40092164812512944042898637357, −5.10848134340511699269751344980, −4.62132126163058058408218737972, −4.29633131407904759341016497101, −4.17071427905431246841868577944, −4.13622685959038549297121858750, −3.77048350142978692165784547517, −3.63097656764416510019899283663, −3.53673367842698188455855425497, −2.85005657271218686986235037289, −2.84938167841183354427928620375, −2.62619672697677190812160725695, −2.04598562968674211633358081153, −1.71884993646833810372214609288, −1.41722309508015648566065006397, −1.24340931689433925516283706346, −0.58087134435570794693660983215, −0.33867661168378627352240419280,
0.33867661168378627352240419280, 0.58087134435570794693660983215, 1.24340931689433925516283706346, 1.41722309508015648566065006397, 1.71884993646833810372214609288, 2.04598562968674211633358081153, 2.62619672697677190812160725695, 2.84938167841183354427928620375, 2.85005657271218686986235037289, 3.53673367842698188455855425497, 3.63097656764416510019899283663, 3.77048350142978692165784547517, 4.13622685959038549297121858750, 4.17071427905431246841868577944, 4.29633131407904759341016497101, 4.62132126163058058408218737972, 5.10848134340511699269751344980, 5.40092164812512944042898637357, 5.74625787438582483704658803682, 5.77513251299169465228876921778, 6.06436684263477582493301994571, 6.54071180711964683928202502563, 6.56611384038250505653043893596, 6.65347211365554599901387542844, 6.81958857123440871293661366130