L(s) = 1 | + (4 + 6.92i)2-s + (1.38 − 2.39i)3-s + (−31.9 + 55.4i)4-s + (−125. + 216. i)5-s + 22.1·6-s + (133. − 231. i)7-s − 511.·8-s + (1.08e3 + 1.88e3i)9-s − 2.00e3·10-s − 2.17e3·11-s + (88.5 + 153. i)12-s + (−2.08e3 + 3.60e3i)13-s + 2.13e3·14-s + (345. + 598. i)15-s + (−2.04e3 − 3.54e3i)16-s + (−1.80e4 − 3.12e4i)17-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (0.0295 − 0.0512i)3-s + (−0.249 + 0.433i)4-s + (−0.447 + 0.774i)5-s + 0.0418·6-s + (0.147 − 0.254i)7-s − 0.353·8-s + (0.498 + 0.862i)9-s − 0.632·10-s − 0.492·11-s + (0.0147 + 0.0256i)12-s + (−0.262 + 0.454i)13-s + 0.207·14-s + (0.0264 + 0.0458i)15-s + (−0.125 − 0.216i)16-s + (−0.889 − 1.54i)17-s + ⋯ |
Λ(s)=(=(74s/2ΓC(s)L(s)(−0.727+0.685i)Λ(8−s)
Λ(s)=(=(74s/2ΓC(s+7/2)L(s)(−0.727+0.685i)Λ(1−s)
Degree: |
2 |
Conductor: |
74
= 2⋅37
|
Sign: |
−0.727+0.685i
|
Analytic conductor: |
23.1164 |
Root analytic conductor: |
4.80796 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ74(63,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 74, ( :7/2), −0.727+0.685i)
|
Particular Values
L(4) |
≈ |
0.199275−0.502019i |
L(21) |
≈ |
0.199275−0.502019i |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−4−6.92i)T |
| 37 | 1+(−1.90e5+2.41e5i)T |
good | 3 | 1+(−1.38+2.39i)T+(−1.09e3−1.89e3i)T2 |
| 5 | 1+(125.−216.i)T+(−3.90e4−6.76e4i)T2 |
| 7 | 1+(−133.+231.i)T+(−4.11e5−7.13e5i)T2 |
| 11 | 1+2.17e3T+1.94e7T2 |
| 13 | 1+(2.08e3−3.60e3i)T+(−3.13e7−5.43e7i)T2 |
| 17 | 1+(1.80e4+3.12e4i)T+(−2.05e8+3.55e8i)T2 |
| 19 | 1+(−2.33e3+4.04e3i)T+(−4.46e8−7.74e8i)T2 |
| 23 | 1+4.00e4T+3.40e9T2 |
| 29 | 1+8.54e4T+1.72e10T2 |
| 31 | 1+3.19e5T+2.75e10T2 |
| 41 | 1+(−3.95e5+6.85e5i)T+(−9.73e10−1.68e11i)T2 |
| 43 | 1+7.88e5T+2.71e11T2 |
| 47 | 1−1.31e5T+5.06e11T2 |
| 53 | 1+(4.24e5+7.35e5i)T+(−5.87e11+1.01e12i)T2 |
| 59 | 1+(−1.34e6−2.33e6i)T+(−1.24e12+2.15e12i)T2 |
| 61 | 1+(1.10e6−1.92e6i)T+(−1.57e12−2.72e12i)T2 |
| 67 | 1+(8.67e5−1.50e6i)T+(−3.03e12−5.24e12i)T2 |
| 71 | 1+(1.24e6−2.15e6i)T+(−4.54e12−7.87e12i)T2 |
| 73 | 1+1.24e6T+1.10e13T2 |
| 79 | 1+(−1.61e5+2.79e5i)T+(−9.60e12−1.66e13i)T2 |
| 83 | 1+(−3.84e6−6.65e6i)T+(−1.35e13+2.35e13i)T2 |
| 89 | 1+(−2.91e6−5.04e6i)T+(−2.21e13+3.83e13i)T2 |
| 97 | 1+3.96e6T+8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.88405187321213974318180652866, −13.01528228020440442727731596539, −11.55950908245911827538953259127, −10.63802223163625687621051272287, −9.145631124005076270975637464916, −7.50294409241512277093089617711, −7.12657980350889957547968966009, −5.33600003721008846113635268655, −4.06689913531336768521233059857, −2.40371313111655631005759246952,
0.15657865428901898624854667646, 1.73887517844640876693006621218, 3.60407246025310478302577254893, 4.73758940595289300230282958458, 6.17034460147888835756436761120, 7.980899548586941063270744310339, 9.102069841257803144709140885167, 10.29161988789305595076531778872, 11.50076348956810480159564326401, 12.64729452655201518970918675233