L(s) = 1 | + (7.51 − 2.73i)2-s + (−19.5 − 7.11i)3-s + (49.0 − 41.1i)4-s + (69.5 + 394. i)5-s − 166.·6-s + (−65.8 − 373. i)7-s + (256. − 443. i)8-s + (−1.34e3 − 1.12e3i)9-s + (1.60e3 + 2.77e3i)10-s + (−2.61e3 + 4.52e3i)11-s + (−1.25e3 + 455. i)12-s + (1.58e3 − 1.33e3i)13-s + (−1.51e3 − 2.62e3i)14-s + (1.44e3 − 8.20e3i)15-s + (711. − 4.03e3i)16-s + (−2.42e4 − 2.03e4i)17-s + ⋯ |
L(s) = 1 | + (0.664 − 0.241i)2-s + (−0.417 − 0.152i)3-s + (0.383 − 0.321i)4-s + (0.248 + 1.41i)5-s − 0.314·6-s + (−0.0725 − 0.411i)7-s + (0.176 − 0.306i)8-s + (−0.614 − 0.515i)9-s + (0.506 + 0.877i)10-s + (−0.591 + 1.02i)11-s + (−0.208 + 0.0760i)12-s + (0.200 − 0.167i)13-s + (−0.147 − 0.255i)14-s + (0.110 − 0.627i)15-s + (0.0434 − 0.246i)16-s + (−1.19 − 1.00i)17-s + ⋯ |
Λ(s)=(=(74s/2ΓC(s)L(s)(−0.926−0.377i)Λ(8−s)
Λ(s)=(=(74s/2ΓC(s+7/2)L(s)(−0.926−0.377i)Λ(1−s)
Degree: |
2 |
Conductor: |
74
= 2⋅37
|
Sign: |
−0.926−0.377i
|
Analytic conductor: |
23.1164 |
Root analytic conductor: |
4.80796 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ74(7,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 74, ( :7/2), −0.926−0.377i)
|
Particular Values
L(4) |
≈ |
0.0748705+0.382387i |
L(21) |
≈ |
0.0748705+0.382387i |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−7.51+2.73i)T |
| 37 | 1+(−2.87e5+1.11e5i)T |
good | 3 | 1+(19.5+7.11i)T+(1.67e3+1.40e3i)T2 |
| 5 | 1+(−69.5−394.i)T+(−7.34e4+2.67e4i)T2 |
| 7 | 1+(65.8+373.i)T+(−7.73e5+2.81e5i)T2 |
| 11 | 1+(2.61e3−4.52e3i)T+(−9.74e6−1.68e7i)T2 |
| 13 | 1+(−1.58e3+1.33e3i)T+(1.08e7−6.17e7i)T2 |
| 17 | 1+(2.42e4+2.03e4i)T+(7.12e7+4.04e8i)T2 |
| 19 | 1+(2.60e4+9.46e3i)T+(6.84e8+5.74e8i)T2 |
| 23 | 1+(−1.55e4−2.68e4i)T+(−1.70e9+2.94e9i)T2 |
| 29 | 1+(1.27e5−2.21e5i)T+(−8.62e9−1.49e10i)T2 |
| 31 | 1+2.90e5T+2.75e10T2 |
| 41 | 1+(3.76e5−3.15e5i)T+(3.38e10−1.91e11i)T2 |
| 43 | 1+2.40e5T+2.71e11T2 |
| 47 | 1+(1.96e5+3.40e5i)T+(−2.53e11+4.38e11i)T2 |
| 53 | 1+(1.48e5−8.42e5i)T+(−1.10e12−4.01e11i)T2 |
| 59 | 1+(−1.63e5+9.27e5i)T+(−2.33e12−8.51e11i)T2 |
| 61 | 1+(−1.02e6+8.59e5i)T+(5.45e11−3.09e12i)T2 |
| 67 | 1+(6.68e5+3.79e6i)T+(−5.69e12+2.07e12i)T2 |
| 71 | 1+(2.35e6+8.55e5i)T+(6.96e12+5.84e12i)T2 |
| 73 | 1−5.32e6T+1.10e13T2 |
| 79 | 1+(1.92e5+1.09e6i)T+(−1.80e13+6.56e12i)T2 |
| 83 | 1+(−7.07e6−5.93e6i)T+(4.71e12+2.67e13i)T2 |
| 89 | 1+(2.16e6−1.22e7i)T+(−4.15e13−1.51e13i)T2 |
| 97 | 1+(7.49e5+1.29e6i)T+(−4.03e13+6.99e13i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.56404872717863128056281696007, −12.59439585237252791583954770339, −11.15568342412260940664651502224, −10.79590861746968249347117923903, −9.373569653494822376855036557367, −7.21280759177989262647373059046, −6.57415682665465319637395404124, −5.14977954370635497917892975723, −3.44227940775691191010931608812, −2.20057912499640660002424996681,
0.10080551964344067204724181447, 2.14296355369613909411422223393, 4.16891873772899023385634132624, 5.39460229673568699128687260589, 6.09074378641107511274378034961, 8.200429153763231642361137243270, 8.883796006681935556059466862694, 10.71564429617088268867872814741, 11.66282989445871133556455387790, 12.99882588239031588581662061439