Properties

Label 2-74-37.7-c7-0-0
Degree $2$
Conductor $74$
Sign $-0.926 - 0.377i$
Analytic cond. $23.1164$
Root an. cond. $4.80796$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (7.51 − 2.73i)2-s + (−19.5 − 7.11i)3-s + (49.0 − 41.1i)4-s + (69.5 + 394. i)5-s − 166.·6-s + (−65.8 − 373. i)7-s + (256. − 443. i)8-s + (−1.34e3 − 1.12e3i)9-s + (1.60e3 + 2.77e3i)10-s + (−2.61e3 + 4.52e3i)11-s + (−1.25e3 + 455. i)12-s + (1.58e3 − 1.33e3i)13-s + (−1.51e3 − 2.62e3i)14-s + (1.44e3 − 8.20e3i)15-s + (711. − 4.03e3i)16-s + (−2.42e4 − 2.03e4i)17-s + ⋯
L(s)  = 1  + (0.664 − 0.241i)2-s + (−0.417 − 0.152i)3-s + (0.383 − 0.321i)4-s + (0.248 + 1.41i)5-s − 0.314·6-s + (−0.0725 − 0.411i)7-s + (0.176 − 0.306i)8-s + (−0.614 − 0.515i)9-s + (0.506 + 0.877i)10-s + (−0.591 + 1.02i)11-s + (−0.208 + 0.0760i)12-s + (0.200 − 0.167i)13-s + (−0.147 − 0.255i)14-s + (0.110 − 0.627i)15-s + (0.0434 − 0.246i)16-s + (−1.19 − 1.00i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.926 - 0.377i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.926 - 0.377i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(74\)    =    \(2 \cdot 37\)
Sign: $-0.926 - 0.377i$
Analytic conductor: \(23.1164\)
Root analytic conductor: \(4.80796\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{74} (7, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 74,\ (\ :7/2),\ -0.926 - 0.377i)\)

Particular Values

\(L(4)\) \(\approx\) \(0.0748705 + 0.382387i\)
\(L(\frac12)\) \(\approx\) \(0.0748705 + 0.382387i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-7.51 + 2.73i)T \)
37 \( 1 + (-2.87e5 + 1.11e5i)T \)
good3 \( 1 + (19.5 + 7.11i)T + (1.67e3 + 1.40e3i)T^{2} \)
5 \( 1 + (-69.5 - 394. i)T + (-7.34e4 + 2.67e4i)T^{2} \)
7 \( 1 + (65.8 + 373. i)T + (-7.73e5 + 2.81e5i)T^{2} \)
11 \( 1 + (2.61e3 - 4.52e3i)T + (-9.74e6 - 1.68e7i)T^{2} \)
13 \( 1 + (-1.58e3 + 1.33e3i)T + (1.08e7 - 6.17e7i)T^{2} \)
17 \( 1 + (2.42e4 + 2.03e4i)T + (7.12e7 + 4.04e8i)T^{2} \)
19 \( 1 + (2.60e4 + 9.46e3i)T + (6.84e8 + 5.74e8i)T^{2} \)
23 \( 1 + (-1.55e4 - 2.68e4i)T + (-1.70e9 + 2.94e9i)T^{2} \)
29 \( 1 + (1.27e5 - 2.21e5i)T + (-8.62e9 - 1.49e10i)T^{2} \)
31 \( 1 + 2.90e5T + 2.75e10T^{2} \)
41 \( 1 + (3.76e5 - 3.15e5i)T + (3.38e10 - 1.91e11i)T^{2} \)
43 \( 1 + 2.40e5T + 2.71e11T^{2} \)
47 \( 1 + (1.96e5 + 3.40e5i)T + (-2.53e11 + 4.38e11i)T^{2} \)
53 \( 1 + (1.48e5 - 8.42e5i)T + (-1.10e12 - 4.01e11i)T^{2} \)
59 \( 1 + (-1.63e5 + 9.27e5i)T + (-2.33e12 - 8.51e11i)T^{2} \)
61 \( 1 + (-1.02e6 + 8.59e5i)T + (5.45e11 - 3.09e12i)T^{2} \)
67 \( 1 + (6.68e5 + 3.79e6i)T + (-5.69e12 + 2.07e12i)T^{2} \)
71 \( 1 + (2.35e6 + 8.55e5i)T + (6.96e12 + 5.84e12i)T^{2} \)
73 \( 1 - 5.32e6T + 1.10e13T^{2} \)
79 \( 1 + (1.92e5 + 1.09e6i)T + (-1.80e13 + 6.56e12i)T^{2} \)
83 \( 1 + (-7.07e6 - 5.93e6i)T + (4.71e12 + 2.67e13i)T^{2} \)
89 \( 1 + (2.16e6 - 1.22e7i)T + (-4.15e13 - 1.51e13i)T^{2} \)
97 \( 1 + (7.49e5 + 1.29e6i)T + (-4.03e13 + 6.99e13i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.56404872717863128056281696007, −12.59439585237252791583954770339, −11.15568342412260940664651502224, −10.79590861746968249347117923903, −9.373569653494822376855036557367, −7.21280759177989262647373059046, −6.57415682665465319637395404124, −5.14977954370635497917892975723, −3.44227940775691191010931608812, −2.20057912499640660002424996681, 0.10080551964344067204724181447, 2.14296355369613909411422223393, 4.16891873772899023385634132624, 5.39460229673568699128687260589, 6.09074378641107511274378034961, 8.200429153763231642361137243270, 8.883796006681935556059466862694, 10.71564429617088268867872814741, 11.66282989445871133556455387790, 12.99882588239031588581662061439

Graph of the $Z$-function along the critical line