L(s) = 1 | − 2·3-s − 7·7-s − 9-s − 3·13-s + 4·17-s + 8·19-s + 14·21-s − 9·23-s + 7·27-s − 9·29-s + 17·31-s + 3·37-s + 6·39-s − 16·41-s + 4·43-s − 11·47-s + 18·49-s − 8·51-s + 3·53-s − 16·57-s − 2·59-s + 15·61-s + 7·63-s + 5·67-s + 18·69-s − 5·71-s + 6·73-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 2.64·7-s − 1/3·9-s − 0.832·13-s + 0.970·17-s + 1.83·19-s + 3.05·21-s − 1.87·23-s + 1.34·27-s − 1.67·29-s + 3.05·31-s + 0.493·37-s + 0.960·39-s − 2.49·41-s + 0.609·43-s − 1.60·47-s + 18/7·49-s − 1.12·51-s + 0.412·53-s − 2.11·57-s − 0.260·59-s + 1.92·61-s + 0.881·63-s + 0.610·67-s + 2.16·69-s − 0.593·71-s + 0.702·73-s + ⋯ |
Λ(s)=(=((29⋅56⋅373)s/2ΓC(s)3L(s)Λ(2−s)
Λ(s)=(=((29⋅56⋅373)s/2ΓC(s+1/2)3L(s)Λ(1−s)
Degree: |
6 |
Conductor: |
29⋅56⋅373
|
Sign: |
1
|
Analytic conductor: |
206312. |
Root analytic conductor: |
7.68695 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(6, 29⋅56⋅373, ( :1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.165685856 |
L(21) |
≈ |
1.165685856 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
| 37 | C1 | (1−T)3 |
good | 3 | S4×C2 | 1+2T+5T2+5T3+5pT4+2p2T5+p3T6 |
| 7 | S4×C2 | 1+pT+31T2+94T3+31pT4+p3T5+p3T6 |
| 11 | S4×C2 | 1−3T2+27T3−3pT4+p3T6 |
| 13 | S4×C2 | 1+3T+6T2+16T3+6pT4+3p2T5+p3T6 |
| 17 | S4×C2 | 1−4T+31T2−120T3+31pT4−4p2T5+p3T6 |
| 19 | S4×C2 | 1−8T+53T2−240T3+53pT4−8p2T5+p3T6 |
| 23 | S4×C2 | 1+9T+4pT2+428T3+4p2T4+9p2T5+p3T6 |
| 29 | S4×C2 | 1+9T+110T2+536T3+110pT4+9p2T5+p3T6 |
| 31 | S4×C2 | 1−17T+184T2−1202T3+184pT4−17p2T5+p3T6 |
| 41 | S4×C2 | 1+16T+193T2+1359T3+193pT4+16p2T5+p3T6 |
| 43 | S4×C2 | 1−4T+9T2−112T3+9pT4−4p2T5+p3T6 |
| 47 | S4×C2 | 1+11T+131T2+1030T3+131pT4+11p2T5+p3T6 |
| 53 | S4×C2 | 1−3T+59T2−610T3+59pT4−3p2T5+p3T6 |
| 59 | S4×C2 | 1+2T+53T2+220T3+53pT4+2p2T5+p3T6 |
| 61 | S4×C2 | 1−15T+212T2−1778T3+212pT4−15p2T5+p3T6 |
| 67 | S4×C2 | 1−5T+22T2+274T3+22pT4−5p2T5+p3T6 |
| 71 | S4×C2 | 1+5T+189T2+714T3+189pT4+5p2T5+p3T6 |
| 73 | S4×C2 | 1−6T+195T2−839T3+195pT4−6p2T5+p3T6 |
| 79 | S4×C2 | 1+T+218T2+126T3+218pT4+p2T5+p3T6 |
| 83 | S4×C2 | 1−9T+173T2−1606T3+173pT4−9p2T5+p3T6 |
| 89 | S4×C2 | 1−16T+3pT2−2784T3+3p2T4−16p2T5+p3T6 |
| 97 | S4×C2 | 1+47T2−256T3+47pT4+p3T6 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.82597383886115103152097747077, −6.62476670334853610059785180050, −6.50519004640076053306026871112, −6.29225074822902450509485758747, −5.94693968480935463685694953958, −5.91467031455581180554891968681, −5.75664377606120889453259489507, −5.25819526777832721885376784105, −5.11488878697100925241818021955, −5.09971396338078411086741366277, −4.61782844692307296945102744552, −4.46630307893789394838827068730, −3.91398495037311008660499534178, −3.64943228517592097414866611642, −3.51335728165785725100706819935, −3.42144629669058363788685205009, −2.92275536711509294072318885703, −2.75076857123395160049850922252, −2.68195605252461722984835362331, −2.15355087273357745853983803431, −1.65860456085650906516836146068, −1.51516477875460610649956303060, −0.63139176988533939824238816023, −0.58579249176455241752766890652, −0.38871566194525147371078479803,
0.38871566194525147371078479803, 0.58579249176455241752766890652, 0.63139176988533939824238816023, 1.51516477875460610649956303060, 1.65860456085650906516836146068, 2.15355087273357745853983803431, 2.68195605252461722984835362331, 2.75076857123395160049850922252, 2.92275536711509294072318885703, 3.42144629669058363788685205009, 3.51335728165785725100706819935, 3.64943228517592097414866611642, 3.91398495037311008660499534178, 4.46630307893789394838827068730, 4.61782844692307296945102744552, 5.09971396338078411086741366277, 5.11488878697100925241818021955, 5.25819526777832721885376784105, 5.75664377606120889453259489507, 5.91467031455581180554891968681, 5.94693968480935463685694953958, 6.29225074822902450509485758747, 6.50519004640076053306026871112, 6.62476670334853610059785180050, 6.82597383886115103152097747077