Properties

Label 4-7440e2-1.1-c1e2-0-8
Degree $4$
Conductor $55353600$
Sign $1$
Analytic cond. $3529.39$
Root an. cond. $7.70770$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 2·5-s + 3·9-s − 4·13-s − 4·15-s + 4·17-s − 4·23-s + 3·25-s + 4·27-s − 4·29-s − 2·31-s − 12·37-s − 8·39-s − 4·41-s + 16·43-s − 6·45-s − 8·47-s − 8·49-s + 8·51-s − 12·53-s − 4·61-s + 8·65-s + 8·67-s − 8·69-s − 8·71-s − 20·73-s + 6·75-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.894·5-s + 9-s − 1.10·13-s − 1.03·15-s + 0.970·17-s − 0.834·23-s + 3/5·25-s + 0.769·27-s − 0.742·29-s − 0.359·31-s − 1.97·37-s − 1.28·39-s − 0.624·41-s + 2.43·43-s − 0.894·45-s − 1.16·47-s − 8/7·49-s + 1.12·51-s − 1.64·53-s − 0.512·61-s + 0.992·65-s + 0.977·67-s − 0.963·69-s − 0.949·71-s − 2.34·73-s + 0.692·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55353600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55353600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(55353600\)    =    \(2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(3529.39\)
Root analytic conductor: \(7.70770\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 55353600,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 - T )^{2} \)
5$C_1$ \( ( 1 + T )^{2} \)
31$C_1$ \( ( 1 + T )^{2} \)
good7$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$D_{4}$ \( 1 + 4 T + 24 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
19$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
23$D_{4}$ \( 1 + 4 T + 26 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 + 4 T + 56 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + 12 T + 104 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 4 T - 10 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 - 16 T + 126 T^{2} - 16 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 + 8 T + 86 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 64 T^{2} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + 4 T + 102 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 8 T + 144 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 8 T + 152 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 20 T + 240 T^{2} + 20 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 + 4 T + 138 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 12 T + 178 T^{2} - 12 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 4 T + 176 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 20 T + 270 T^{2} + 20 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.70630676768948473668775565710, −7.50462914175399962161902402838, −7.06468057705941292429778841259, −7.04168207828962926948327479357, −6.27388854555689088525312454210, −6.16126241075320095347175771972, −5.39436700425051917743986234500, −5.33798780701046543772875311323, −4.70439519283125922258333212217, −4.54198130000904251818904302117, −3.96382480258750722175100470164, −3.74867636289858712945445810088, −3.22154256154143897431808910779, −3.11042504244127140452620438963, −2.52552091026484884433703310692, −2.12105416602992355618330437316, −1.52573970777887798524463564505, −1.25206818586677166841824873256, 0, 0, 1.25206818586677166841824873256, 1.52573970777887798524463564505, 2.12105416602992355618330437316, 2.52552091026484884433703310692, 3.11042504244127140452620438963, 3.22154256154143897431808910779, 3.74867636289858712945445810088, 3.96382480258750722175100470164, 4.54198130000904251818904302117, 4.70439519283125922258333212217, 5.33798780701046543772875311323, 5.39436700425051917743986234500, 6.16126241075320095347175771972, 6.27388854555689088525312454210, 7.04168207828962926948327479357, 7.06468057705941292429778841259, 7.50462914175399962161902402838, 7.70630676768948473668775565710

Graph of the $Z$-function along the critical line