Properties

Label 2-7440-1.1-c1-0-56
Degree $2$
Conductor $7440$
Sign $1$
Analytic cond. $59.4086$
Root an. cond. $7.70770$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s + 1.56·7-s + 9-s + 1.56·11-s + 2·13-s + 15-s + 5.12·17-s − 4.68·19-s + 1.56·21-s − 5.56·23-s + 25-s + 27-s − 1.12·29-s − 31-s + 1.56·33-s + 1.56·35-s + 5.12·37-s + 2·39-s − 1.12·41-s + 7.80·43-s + 45-s + 3.12·47-s − 4.56·49-s + 5.12·51-s + 11.5·53-s + 1.56·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s + 0.590·7-s + 0.333·9-s + 0.470·11-s + 0.554·13-s + 0.258·15-s + 1.24·17-s − 1.07·19-s + 0.340·21-s − 1.15·23-s + 0.200·25-s + 0.192·27-s − 0.208·29-s − 0.179·31-s + 0.271·33-s + 0.263·35-s + 0.842·37-s + 0.320·39-s − 0.175·41-s + 1.19·43-s + 0.149·45-s + 0.455·47-s − 0.651·49-s + 0.717·51-s + 1.58·53-s + 0.210·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7440 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7440 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7440\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 31\)
Sign: $1$
Analytic conductor: \(59.4086\)
Root analytic conductor: \(7.70770\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7440,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.419638905\)
\(L(\frac12)\) \(\approx\) \(3.419638905\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 - T \)
31 \( 1 + T \)
good7 \( 1 - 1.56T + 7T^{2} \)
11 \( 1 - 1.56T + 11T^{2} \)
13 \( 1 - 2T + 13T^{2} \)
17 \( 1 - 5.12T + 17T^{2} \)
19 \( 1 + 4.68T + 19T^{2} \)
23 \( 1 + 5.56T + 23T^{2} \)
29 \( 1 + 1.12T + 29T^{2} \)
37 \( 1 - 5.12T + 37T^{2} \)
41 \( 1 + 1.12T + 41T^{2} \)
43 \( 1 - 7.80T + 43T^{2} \)
47 \( 1 - 3.12T + 47T^{2} \)
53 \( 1 - 11.5T + 53T^{2} \)
59 \( 1 - 4.87T + 59T^{2} \)
61 \( 1 - 6T + 61T^{2} \)
67 \( 1 + 9.36T + 67T^{2} \)
71 \( 1 + 4.68T + 71T^{2} \)
73 \( 1 - 9.80T + 73T^{2} \)
79 \( 1 - 16.6T + 79T^{2} \)
83 \( 1 - 2.24T + 83T^{2} \)
89 \( 1 + 1.31T + 89T^{2} \)
97 \( 1 + 6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.953679186914090726885351048719, −7.36637808857125504513710442176, −6.40942840968480926456271871619, −5.88835378692802499152407847734, −5.09841851498645150460449934458, −4.12186358114590342152312771630, −3.68984532520236152109015142385, −2.56178389189696991677469835605, −1.86377409912771564889771108507, −0.953577815886392368258272183956, 0.953577815886392368258272183956, 1.86377409912771564889771108507, 2.56178389189696991677469835605, 3.68984532520236152109015142385, 4.12186358114590342152312771630, 5.09841851498645150460449934458, 5.88835378692802499152407847734, 6.40942840968480926456271871619, 7.36637808857125504513710442176, 7.953679186914090726885351048719

Graph of the $Z$-function along the critical line