L(s) = 1 | − 0.786·3-s − 3.29·5-s − 2.38·9-s + 1.29·11-s − 1.21·13-s + 2.59·15-s − 4.08·17-s + 19-s − 8.95·23-s + 5.87·25-s + 4.23·27-s − 9.38·29-s − 1.02·33-s − 2·37-s + 0.954·39-s − 3.57·41-s + 7.72·43-s + 7.85·45-s − 9.46·47-s + 3.21·51-s − 11.9·53-s − 4.27·55-s − 0.786·57-s + 7.21·59-s − 4.87·61-s + 3.99·65-s + 11.3·67-s + ⋯ |
L(s) = 1 | − 0.454·3-s − 1.47·5-s − 0.793·9-s + 0.391·11-s − 0.336·13-s + 0.669·15-s − 0.990·17-s + 0.229·19-s − 1.86·23-s + 1.17·25-s + 0.814·27-s − 1.74·29-s − 0.177·33-s − 0.328·37-s + 0.152·39-s − 0.558·41-s + 1.17·43-s + 1.17·45-s − 1.38·47-s + 0.449·51-s − 1.64·53-s − 0.576·55-s − 0.104·57-s + 0.939·59-s − 0.623·61-s + 0.496·65-s + 1.39·67-s + ⋯ |
Λ(s)=(=(7448s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(7448s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.1706507673 |
L(21) |
≈ |
0.1706507673 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 19 | 1−T |
good | 3 | 1+0.786T+3T2 |
| 5 | 1+3.29T+5T2 |
| 11 | 1−1.29T+11T2 |
| 13 | 1+1.21T+13T2 |
| 17 | 1+4.08T+17T2 |
| 23 | 1+8.95T+23T2 |
| 29 | 1+9.38T+29T2 |
| 31 | 1+31T2 |
| 37 | 1+2T+37T2 |
| 41 | 1+3.57T+41T2 |
| 43 | 1−7.72T+43T2 |
| 47 | 1+9.46T+47T2 |
| 53 | 1+11.9T+53T2 |
| 59 | 1−7.21T+59T2 |
| 61 | 1+4.87T+61T2 |
| 67 | 1−11.3T+67T2 |
| 71 | 1+9.02T+71T2 |
| 73 | 1+5.65T+73T2 |
| 79 | 1−9.57T+79T2 |
| 83 | 1+10.7T+83T2 |
| 89 | 1+11.0T+89T2 |
| 97 | 1−8.59T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.974531417152484732717604997710, −7.23568322917651081978876098659, −6.54036194293671975182006838754, −5.81778228855105169601843295063, −5.04661974617232001466806677259, −4.19091412997547462066225798548, −3.74876378024051065381116480851, −2.81941899635224422438527585033, −1.74353655445254116995674239693, −0.20408656993888991514899041791,
0.20408656993888991514899041791, 1.74353655445254116995674239693, 2.81941899635224422438527585033, 3.74876378024051065381116480851, 4.19091412997547462066225798548, 5.04661974617232001466806677259, 5.81778228855105169601843295063, 6.54036194293671975182006838754, 7.23568322917651081978876098659, 7.974531417152484732717604997710