L(s) = 1 | + 2i·7-s − 1.41·11-s − 13-s + 1.41i·17-s + 4i·19-s + 2.82·23-s + 5·25-s + 9.89i·29-s + 2·37-s − 2.82i·41-s − 4i·43-s − 9.89·47-s + 3·49-s − 4.24i·53-s − 1.41·59-s + ⋯ |
L(s) = 1 | + 0.755i·7-s − 0.426·11-s − 0.277·13-s + 0.342i·17-s + 0.917i·19-s + 0.589·23-s + 25-s + 1.83i·29-s + 0.328·37-s − 0.441i·41-s − 0.609i·43-s − 1.44·47-s + 0.428·49-s − 0.582i·53-s − 0.184·59-s + ⋯ |
Λ(s)=(=(7488s/2ΓC(s)L(s)(−0.816−0.577i)Λ(2−s)
Λ(s)=(=(7488s/2ΓC(s+1/2)L(s)(−0.816−0.577i)Λ(1−s)
Degree: |
2 |
Conductor: |
7488
= 26⋅32⋅13
|
Sign: |
−0.816−0.577i
|
Analytic conductor: |
59.7919 |
Root analytic conductor: |
7.73252 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ7488(4031,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 7488, ( :1/2), −0.816−0.577i)
|
Particular Values
L(1) |
≈ |
1.076568395 |
L(21) |
≈ |
1.076568395 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1+T |
good | 5 | 1−5T2 |
| 7 | 1−2iT−7T2 |
| 11 | 1+1.41T+11T2 |
| 17 | 1−1.41iT−17T2 |
| 19 | 1−4iT−19T2 |
| 23 | 1−2.82T+23T2 |
| 29 | 1−9.89iT−29T2 |
| 31 | 1−31T2 |
| 37 | 1−2T+37T2 |
| 41 | 1+2.82iT−41T2 |
| 43 | 1+4iT−43T2 |
| 47 | 1+9.89T+47T2 |
| 53 | 1+4.24iT−53T2 |
| 59 | 1+1.41T+59T2 |
| 61 | 1+8T+61T2 |
| 67 | 1+10iT−67T2 |
| 71 | 1−7.07T+71T2 |
| 73 | 1−6T+73T2 |
| 79 | 1−8iT−79T2 |
| 83 | 1+12.7T+83T2 |
| 89 | 1+5.65iT−89T2 |
| 97 | 1−2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.259653709485818782199536262385, −7.47301798124843684061664161442, −6.77456470613577402512093422331, −6.08283342615326817445650242079, −5.22418583352148922284503006884, −4.90695935661309983518185932572, −3.72084106637633549003127158598, −3.05410932742519117314909649907, −2.19072989636188566162693606694, −1.25214381098525281955166205498,
0.27150572431376904006040150794, 1.24019311921885996675135745622, 2.52205122614482167652039647396, 3.06215217720542047608658397282, 4.18515884012541841582530939555, 4.68579080409422515425999368786, 5.42539961956459633495941206236, 6.36475446483165807490649111671, 6.93541139854434095665543617136, 7.61280283418713411662956862006