Properties

Label 2-750-1.1-c1-0-7
Degree $2$
Conductor $750$
Sign $1$
Analytic cond. $5.98878$
Root an. cond. $2.44719$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 6-s + 4.61·7-s − 8-s + 9-s + 0.854·11-s + 12-s + 5.61·13-s − 4.61·14-s + 16-s − 5.70·17-s − 18-s − 7.09·19-s + 4.61·21-s − 0.854·22-s + 8.09·23-s − 24-s − 5.61·26-s + 27-s + 4.61·28-s − 7.70·29-s + 2.47·31-s − 32-s + 0.854·33-s + 5.70·34-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 0.5·4-s − 0.408·6-s + 1.74·7-s − 0.353·8-s + 0.333·9-s + 0.257·11-s + 0.288·12-s + 1.55·13-s − 1.23·14-s + 0.250·16-s − 1.38·17-s − 0.235·18-s − 1.62·19-s + 1.00·21-s − 0.182·22-s + 1.68·23-s − 0.204·24-s − 1.10·26-s + 0.192·27-s + 0.872·28-s − 1.43·29-s + 0.444·31-s − 0.176·32-s + 0.148·33-s + 0.978·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 750 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 750 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(750\)    =    \(2 \cdot 3 \cdot 5^{3}\)
Sign: $1$
Analytic conductor: \(5.98878\)
Root analytic conductor: \(2.44719\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 750,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.685699116\)
\(L(\frac12)\) \(\approx\) \(1.685699116\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 \)
good7 \( 1 - 4.61T + 7T^{2} \)
11 \( 1 - 0.854T + 11T^{2} \)
13 \( 1 - 5.61T + 13T^{2} \)
17 \( 1 + 5.70T + 17T^{2} \)
19 \( 1 + 7.09T + 19T^{2} \)
23 \( 1 - 8.09T + 23T^{2} \)
29 \( 1 + 7.70T + 29T^{2} \)
31 \( 1 - 2.47T + 31T^{2} \)
37 \( 1 - 0.618T + 37T^{2} \)
41 \( 1 - 2.61T + 41T^{2} \)
43 \( 1 + 5.70T + 43T^{2} \)
47 \( 1 - 6.38T + 47T^{2} \)
53 \( 1 - 2.61T + 53T^{2} \)
59 \( 1 + 4.14T + 59T^{2} \)
61 \( 1 + 1.70T + 61T^{2} \)
67 \( 1 + 1.23T + 67T^{2} \)
71 \( 1 - 4.47T + 71T^{2} \)
73 \( 1 + 8T + 73T^{2} \)
79 \( 1 - 3.52T + 79T^{2} \)
83 \( 1 - 2T + 83T^{2} \)
89 \( 1 + 4.56T + 89T^{2} \)
97 \( 1 - 8.18T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.60117460001814790123815808961, −8.972527151304895505297455197288, −8.808798108697884325141960292324, −8.043164029822116798756954868928, −7.09696044061933819000435744988, −6.13507820152330042751533510841, −4.79444024909693425982103301951, −3.87869696057505651806647739525, −2.29213383794753257312806161143, −1.36708512983003916590438478009, 1.36708512983003916590438478009, 2.29213383794753257312806161143, 3.87869696057505651806647739525, 4.79444024909693425982103301951, 6.13507820152330042751533510841, 7.09696044061933819000435744988, 8.043164029822116798756954868928, 8.808798108697884325141960292324, 8.972527151304895505297455197288, 10.60117460001814790123815808961

Graph of the $Z$-function along the critical line