L(s) = 1 | + (0.809 − 0.587i)2-s + (0.309 − 0.951i)3-s + (0.309 − 0.951i)4-s + (−0.309 − 0.951i)6-s + 1.72·7-s + (−0.309 − 0.951i)8-s + (−0.809 − 0.587i)9-s + (1.97 − 1.43i)11-s + (−0.809 − 0.587i)12-s + (−2.40 − 1.74i)13-s + (1.39 − 1.01i)14-s + (−0.809 − 0.587i)16-s + (−1.03 − 3.18i)17-s − 0.999·18-s + (0.694 + 2.13i)19-s + ⋯ |
L(s) = 1 | + (0.572 − 0.415i)2-s + (0.178 − 0.549i)3-s + (0.154 − 0.475i)4-s + (−0.126 − 0.388i)6-s + 0.652·7-s + (−0.109 − 0.336i)8-s + (−0.269 − 0.195i)9-s + (0.595 − 0.432i)11-s + (−0.233 − 0.169i)12-s + (−0.666 − 0.484i)13-s + (0.373 − 0.271i)14-s + (−0.202 − 0.146i)16-s + (−0.250 − 0.771i)17-s − 0.235·18-s + (0.159 + 0.490i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 750 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.187 + 0.982i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 750 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.187 + 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.46554 - 1.77153i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.46554 - 1.77153i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.809 + 0.587i)T \) |
| 3 | \( 1 + (-0.309 + 0.951i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 1.72T + 7T^{2} \) |
| 11 | \( 1 + (-1.97 + 1.43i)T + (3.39 - 10.4i)T^{2} \) |
| 13 | \( 1 + (2.40 + 1.74i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (1.03 + 3.18i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (-0.694 - 2.13i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + (-7.37 + 5.35i)T + (7.10 - 21.8i)T^{2} \) |
| 29 | \( 1 + (2.89 - 8.91i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (1.89 + 5.82i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (-2.67 - 1.94i)T + (11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (-4.95 - 3.60i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 + 7.06T + 43T^{2} \) |
| 47 | \( 1 + (-1.54 + 4.74i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-2.11 + 6.51i)T + (-42.8 - 31.1i)T^{2} \) |
| 59 | \( 1 + (-0.147 - 0.107i)T + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (4.16 - 3.02i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + (-3.67 - 11.3i)T + (-54.2 + 39.3i)T^{2} \) |
| 71 | \( 1 + (3.51 - 10.8i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (-5.44 + 3.95i)T + (22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (3.50 - 10.8i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (-2.82 - 8.69i)T + (-67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 + (-6.56 + 4.77i)T + (27.5 - 84.6i)T^{2} \) |
| 97 | \( 1 + (-3.05 + 9.40i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.26499253892338593818216072331, −9.239217839085251635111737943729, −8.436227246887676208731192774841, −7.37649734424147841180067063931, −6.63907253246798419157100698411, −5.47097884642711357925774555429, −4.70651104862278520056304430005, −3.41056128865499857893186839027, −2.39432410281391021779316309777, −1.04075997064099875422890647544,
1.91543962907373329555912867210, 3.31025095032694638901118378278, 4.39391060413323703954393623504, 4.99302696164616838846419719866, 6.09116777925122335226808004826, 7.14902774454321612704066274254, 7.85721371860222511979912960455, 9.000168447081126891459849708932, 9.511346983118703950485625370638, 10.75703850510693853819014125203