L(s) = 1 | + (0.809 − 0.587i)2-s + (0.309 − 0.951i)3-s + (0.309 − 0.951i)4-s + (−0.309 − 0.951i)6-s + 1.72·7-s + (−0.309 − 0.951i)8-s + (−0.809 − 0.587i)9-s + (1.97 − 1.43i)11-s + (−0.809 − 0.587i)12-s + (−2.40 − 1.74i)13-s + (1.39 − 1.01i)14-s + (−0.809 − 0.587i)16-s + (−1.03 − 3.18i)17-s − 0.999·18-s + (0.694 + 2.13i)19-s + ⋯ |
L(s) = 1 | + (0.572 − 0.415i)2-s + (0.178 − 0.549i)3-s + (0.154 − 0.475i)4-s + (−0.126 − 0.388i)6-s + 0.652·7-s + (−0.109 − 0.336i)8-s + (−0.269 − 0.195i)9-s + (0.595 − 0.432i)11-s + (−0.233 − 0.169i)12-s + (−0.666 − 0.484i)13-s + (0.373 − 0.271i)14-s + (−0.202 − 0.146i)16-s + (−0.250 − 0.771i)17-s − 0.235·18-s + (0.159 + 0.490i)19-s + ⋯ |
Λ(s)=(=(750s/2ΓC(s)L(s)(−0.187+0.982i)Λ(2−s)
Λ(s)=(=(750s/2ΓC(s+1/2)L(s)(−0.187+0.982i)Λ(1−s)
Degree: |
2 |
Conductor: |
750
= 2⋅3⋅53
|
Sign: |
−0.187+0.982i
|
Analytic conductor: |
5.98878 |
Root analytic conductor: |
2.44719 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ750(301,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 750, ( :1/2), −0.187+0.982i)
|
Particular Values
L(1) |
≈ |
1.46554−1.77153i |
L(21) |
≈ |
1.46554−1.77153i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.809+0.587i)T |
| 3 | 1+(−0.309+0.951i)T |
| 5 | 1 |
good | 7 | 1−1.72T+7T2 |
| 11 | 1+(−1.97+1.43i)T+(3.39−10.4i)T2 |
| 13 | 1+(2.40+1.74i)T+(4.01+12.3i)T2 |
| 17 | 1+(1.03+3.18i)T+(−13.7+9.99i)T2 |
| 19 | 1+(−0.694−2.13i)T+(−15.3+11.1i)T2 |
| 23 | 1+(−7.37+5.35i)T+(7.10−21.8i)T2 |
| 29 | 1+(2.89−8.91i)T+(−23.4−17.0i)T2 |
| 31 | 1+(1.89+5.82i)T+(−25.0+18.2i)T2 |
| 37 | 1+(−2.67−1.94i)T+(11.4+35.1i)T2 |
| 41 | 1+(−4.95−3.60i)T+(12.6+38.9i)T2 |
| 43 | 1+7.06T+43T2 |
| 47 | 1+(−1.54+4.74i)T+(−38.0−27.6i)T2 |
| 53 | 1+(−2.11+6.51i)T+(−42.8−31.1i)T2 |
| 59 | 1+(−0.147−0.107i)T+(18.2+56.1i)T2 |
| 61 | 1+(4.16−3.02i)T+(18.8−58.0i)T2 |
| 67 | 1+(−3.67−11.3i)T+(−54.2+39.3i)T2 |
| 71 | 1+(3.51−10.8i)T+(−57.4−41.7i)T2 |
| 73 | 1+(−5.44+3.95i)T+(22.5−69.4i)T2 |
| 79 | 1+(3.50−10.8i)T+(−63.9−46.4i)T2 |
| 83 | 1+(−2.82−8.69i)T+(−67.1+48.7i)T2 |
| 89 | 1+(−6.56+4.77i)T+(27.5−84.6i)T2 |
| 97 | 1+(−3.05+9.40i)T+(−78.4−57.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.26499253892338593818216072331, −9.239217839085251635111737943729, −8.436227246887676208731192774841, −7.37649734424147841180067063931, −6.63907253246798419157100698411, −5.47097884642711357925774555429, −4.70651104862278520056304430005, −3.41056128865499857893186839027, −2.39432410281391021779316309777, −1.04075997064099875422890647544,
1.91543962907373329555912867210, 3.31025095032694638901118378278, 4.39391060413323703954393623504, 4.99302696164616838846419719866, 6.09116777925122335226808004826, 7.14902774454321612704066274254, 7.85721371860222511979912960455, 9.000168447081126891459849708932, 9.511346983118703950485625370638, 10.75703850510693853819014125203