L(s) = 1 | − 0.783i·2-s + 2.94i·3-s + 1.38·4-s + (−1.21 − 1.87i)5-s + 2.30·6-s − 2.34i·7-s − 2.65i·8-s − 5.66·9-s + (−1.47 + 0.952i)10-s + 3.68·11-s + 4.08i·12-s − 5.30i·13-s − 1.83·14-s + (5.52 − 3.57i)15-s + 0.694·16-s − 1.46i·17-s + ⋯ |
L(s) = 1 | − 0.553i·2-s + 1.69i·3-s + 0.693·4-s + (−0.543 − 0.839i)5-s + 0.941·6-s − 0.887i·7-s − 0.937i·8-s − 1.88·9-s + (−0.464 + 0.301i)10-s + 1.10·11-s + 1.17i·12-s − 1.47i·13-s − 0.491·14-s + (1.42 − 0.923i)15-s + 0.173·16-s − 0.354i·17-s + ⋯ |
Λ(s)=(=(755s/2ΓC(s)L(s)(0.543+0.839i)Λ(2−s)
Λ(s)=(=(755s/2ΓC(s+1/2)L(s)(0.543+0.839i)Λ(1−s)
Degree: |
2 |
Conductor: |
755
= 5⋅151
|
Sign: |
0.543+0.839i
|
Analytic conductor: |
6.02870 |
Root analytic conductor: |
2.45534 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ755(454,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 755, ( :1/2), 0.543+0.839i)
|
Particular Values
L(1) |
≈ |
1.37197−0.746032i |
L(21) |
≈ |
1.37197−0.746032i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(1.21+1.87i)T |
| 151 | 1+T |
good | 2 | 1+0.783iT−2T2 |
| 3 | 1−2.94iT−3T2 |
| 7 | 1+2.34iT−7T2 |
| 11 | 1−3.68T+11T2 |
| 13 | 1+5.30iT−13T2 |
| 17 | 1+1.46iT−17T2 |
| 19 | 1+4.99T+19T2 |
| 23 | 1+6.83iT−23T2 |
| 29 | 1+8.58T+29T2 |
| 31 | 1−6.59T+31T2 |
| 37 | 1−6.57iT−37T2 |
| 41 | 1−10.8T+41T2 |
| 43 | 1−1.24iT−43T2 |
| 47 | 1−3.49iT−47T2 |
| 53 | 1+1.36iT−53T2 |
| 59 | 1−5.00T+59T2 |
| 61 | 1−11.3T+61T2 |
| 67 | 1−1.06iT−67T2 |
| 71 | 1+5.02T+71T2 |
| 73 | 1−15.9iT−73T2 |
| 79 | 1−2.84T+79T2 |
| 83 | 1+2.19iT−83T2 |
| 89 | 1+5.94T+89T2 |
| 97 | 1−16.2iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.28341362507832426223048080772, −9.661266275949201464338265215943, −8.718765291466413101139495973665, −7.86707193853078229156693166798, −6.61570542021040226332160026543, −5.48012505769513636013688151389, −4.24041381509944477976540223348, −3.98453044381737651872297960028, −2.82653778962239593651051807104, −0.796312388738635197760515432436,
1.78852055122684605026590668104, 2.40163058280959169318923681906, 3.87494555584778473951137071487, 5.82584237223109722144280919434, 6.31256190257174540546429625854, 7.01275716739345879734088449858, 7.53204097063189390666933151153, 8.459565058675370577065195910040, 9.260009585466749715550536760910, 10.93428720178776456296950457538