L(s) = 1 | + (−0.5 + 0.866i)7-s + 2·13-s + (0.5 + 0.866i)19-s + (−0.5 + 0.866i)25-s + (0.5 − 0.866i)31-s + (−1 − 1.73i)37-s − 43-s + (−0.499 − 0.866i)49-s + (0.5 + 0.866i)61-s + (−1 + 1.73i)67-s + (0.5 − 0.866i)73-s + (−1 − 1.73i)79-s + (−1 + 1.73i)91-s − 97-s + (−1 − 1.73i)103-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)7-s + 2·13-s + (0.5 + 0.866i)19-s + (−0.5 + 0.866i)25-s + (0.5 − 0.866i)31-s + (−1 − 1.73i)37-s − 43-s + (−0.499 − 0.866i)49-s + (0.5 + 0.866i)61-s + (−1 + 1.73i)67-s + (0.5 − 0.866i)73-s + (−1 − 1.73i)79-s + (−1 + 1.73i)91-s − 97-s + (−1 − 1.73i)103-s + ⋯ |
Λ(s)=(=(756s/2ΓC(s)L(s)(0.895−0.444i)Λ(1−s)
Λ(s)=(=(756s/2ΓC(s)L(s)(0.895−0.444i)Λ(1−s)
Degree: |
2 |
Conductor: |
756
= 22⋅33⋅7
|
Sign: |
0.895−0.444i
|
Analytic conductor: |
0.377293 |
Root analytic conductor: |
0.614241 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ756(53,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 756, ( :0), 0.895−0.444i)
|
Particular Values
L(21) |
≈ |
0.9725035391 |
L(21) |
≈ |
0.9725035391 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(0.5−0.866i)T |
good | 5 | 1+(0.5−0.866i)T2 |
| 11 | 1+(0.5+0.866i)T2 |
| 13 | 1−2T+T2 |
| 17 | 1+(0.5+0.866i)T2 |
| 19 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 23 | 1+(0.5−0.866i)T2 |
| 29 | 1−T2 |
| 31 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 37 | 1+(1+1.73i)T+(−0.5+0.866i)T2 |
| 41 | 1−T2 |
| 43 | 1+T+T2 |
| 47 | 1+(0.5−0.866i)T2 |
| 53 | 1+(0.5+0.866i)T2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 67 | 1+(1−1.73i)T+(−0.5−0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 79 | 1+(1+1.73i)T+(−0.5+0.866i)T2 |
| 83 | 1−T2 |
| 89 | 1+(0.5−0.866i)T2 |
| 97 | 1+T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.62932871528426230517026056625, −9.687532573179586339968001977749, −8.870239416831465612952893521537, −8.232794775295628069526212849968, −7.10171719857339533757056547881, −5.96747182206304400887987792285, −5.61043948651723752723535650071, −4.00545553845051295599186923696, −3.18449586044372927020330116682, −1.68767077795690034784893235093,
1.26918191813805124151530000226, 3.10468264816957414902063507855, 3.92259897083775955625535401179, 5.04877944921169936566024468690, 6.34137702286563838020390891255, 6.78871695268480433648327619841, 8.034532254963809259935478754537, 8.699164035819916900282065218251, 9.742232412987617180579576569954, 10.50220222348165524604662537221