Properties

Label 2-87e2-1.1-c1-0-164
Degree $2$
Conductor $7569$
Sign $-1$
Analytic cond. $60.4387$
Root an. cond. $7.77423$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.44·2-s + 4.00·4-s − 0.217·5-s − 1.53·7-s − 4.90·8-s + 0.534·10-s − 1.30·11-s − 3.76·13-s + 3.75·14-s + 4.01·16-s + 5.99·17-s + 5.43·19-s − 0.872·20-s + 3.20·22-s + 6.21·23-s − 4.95·25-s + 9.22·26-s − 6.13·28-s − 7.36·31-s − 0.0182·32-s − 14.6·34-s + 0.334·35-s − 5.08·37-s − 13.3·38-s + 1.06·40-s + 8.96·41-s − 4.20·43-s + ⋯
L(s)  = 1  − 1.73·2-s + 2.00·4-s − 0.0974·5-s − 0.579·7-s − 1.73·8-s + 0.168·10-s − 0.394·11-s − 1.04·13-s + 1.00·14-s + 1.00·16-s + 1.45·17-s + 1.24·19-s − 0.195·20-s + 0.683·22-s + 1.29·23-s − 0.990·25-s + 1.80·26-s − 1.16·28-s − 1.32·31-s − 0.00322·32-s − 2.51·34-s + 0.0565·35-s − 0.835·37-s − 2.15·38-s + 0.169·40-s + 1.40·41-s − 0.641·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7569\)    =    \(3^{2} \cdot 29^{2}\)
Sign: $-1$
Analytic conductor: \(60.4387\)
Root analytic conductor: \(7.77423\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7569,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
29 \( 1 \)
good2 \( 1 + 2.44T + 2T^{2} \)
5 \( 1 + 0.217T + 5T^{2} \)
7 \( 1 + 1.53T + 7T^{2} \)
11 \( 1 + 1.30T + 11T^{2} \)
13 \( 1 + 3.76T + 13T^{2} \)
17 \( 1 - 5.99T + 17T^{2} \)
19 \( 1 - 5.43T + 19T^{2} \)
23 \( 1 - 6.21T + 23T^{2} \)
31 \( 1 + 7.36T + 31T^{2} \)
37 \( 1 + 5.08T + 37T^{2} \)
41 \( 1 - 8.96T + 41T^{2} \)
43 \( 1 + 4.20T + 43T^{2} \)
47 \( 1 - 0.398T + 47T^{2} \)
53 \( 1 + 8.62T + 53T^{2} \)
59 \( 1 + 5.61T + 59T^{2} \)
61 \( 1 + 1.19T + 61T^{2} \)
67 \( 1 - 6.87T + 67T^{2} \)
71 \( 1 + 5.61T + 71T^{2} \)
73 \( 1 - 15.6T + 73T^{2} \)
79 \( 1 - 3.60T + 79T^{2} \)
83 \( 1 + 2.91T + 83T^{2} \)
89 \( 1 + 0.433T + 89T^{2} \)
97 \( 1 - 6.04T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.61770728385987645942544116524, −7.26588974985635003467753209645, −6.46625262331733143728679751224, −5.56265165008372724372676040783, −4.94182519927531263997836732207, −3.49676223144492492247469890688, −2.94718961065902513218671570357, −1.96363785027452383050699679512, −1.00063205388508171041685843812, 0, 1.00063205388508171041685843812, 1.96363785027452383050699679512, 2.94718961065902513218671570357, 3.49676223144492492247469890688, 4.94182519927531263997836732207, 5.56265165008372724372676040783, 6.46625262331733143728679751224, 7.26588974985635003467753209645, 7.61770728385987645942544116524

Graph of the $Z$-function along the critical line