Properties

Label 2-87e2-1.1-c1-0-279
Degree $2$
Conductor $7569$
Sign $-1$
Analytic cond. $60.4387$
Root an. cond. $7.77423$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.61·2-s + 0.618·4-s + 2.61·5-s + 3.85·7-s + 2.23·8-s − 4.23·10-s + 3·11-s − 5.47·13-s − 6.23·14-s − 4.85·16-s − 5.23·17-s − 5.85·19-s + 1.61·20-s − 4.85·22-s + 4.09·23-s + 1.85·25-s + 8.85·26-s + 2.38·28-s − 3·31-s + 3.38·32-s + 8.47·34-s + 10.0·35-s − 3.70·37-s + 9.47·38-s + 5.85·40-s + 5.76·41-s + 4.85·43-s + ⋯
L(s)  = 1  − 1.14·2-s + 0.309·4-s + 1.17·5-s + 1.45·7-s + 0.790·8-s − 1.33·10-s + 0.904·11-s − 1.51·13-s − 1.66·14-s − 1.21·16-s − 1.26·17-s − 1.34·19-s + 0.361·20-s − 1.03·22-s + 0.852·23-s + 0.370·25-s + 1.73·26-s + 0.450·28-s − 0.538·31-s + 0.597·32-s + 1.45·34-s + 1.70·35-s − 0.609·37-s + 1.53·38-s + 0.925·40-s + 0.900·41-s + 0.740·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7569 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7569\)    =    \(3^{2} \cdot 29^{2}\)
Sign: $-1$
Analytic conductor: \(60.4387\)
Root analytic conductor: \(7.77423\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7569,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
29 \( 1 \)
good2 \( 1 + 1.61T + 2T^{2} \)
5 \( 1 - 2.61T + 5T^{2} \)
7 \( 1 - 3.85T + 7T^{2} \)
11 \( 1 - 3T + 11T^{2} \)
13 \( 1 + 5.47T + 13T^{2} \)
17 \( 1 + 5.23T + 17T^{2} \)
19 \( 1 + 5.85T + 19T^{2} \)
23 \( 1 - 4.09T + 23T^{2} \)
31 \( 1 + 3T + 31T^{2} \)
37 \( 1 + 3.70T + 37T^{2} \)
41 \( 1 - 5.76T + 41T^{2} \)
43 \( 1 - 4.85T + 43T^{2} \)
47 \( 1 + 9.38T + 47T^{2} \)
53 \( 1 - 1.52T + 53T^{2} \)
59 \( 1 - 1.90T + 59T^{2} \)
61 \( 1 + 10.2T + 61T^{2} \)
67 \( 1 + 7T + 67T^{2} \)
71 \( 1 + 1.14T + 71T^{2} \)
73 \( 1 + 13.5T + 73T^{2} \)
79 \( 1 + 7.76T + 79T^{2} \)
83 \( 1 + 7.94T + 83T^{2} \)
89 \( 1 + 13.9T + 89T^{2} \)
97 \( 1 + 3.70T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.56411314941463728486485319268, −7.08187971261500196300632401788, −6.32335747786494892867448021083, −5.40997908342432592544320600810, −4.57860311610881536936892875855, −4.34736707620158582432674652417, −2.59066596421839611463931406048, −1.89416219638705577718539225898, −1.42987578127935682064971696443, 0, 1.42987578127935682064971696443, 1.89416219638705577718539225898, 2.59066596421839611463931406048, 4.34736707620158582432674652417, 4.57860311610881536936892875855, 5.40997908342432592544320600810, 6.32335747786494892867448021083, 7.08187971261500196300632401788, 7.56411314941463728486485319268

Graph of the $Z$-function along the critical line