L(s) = 1 | − 2.09·2-s + 2.37·4-s − 4.22·5-s − 1.68·7-s − 0.783·8-s + 8.83·10-s − 2.06·11-s + 4.77·13-s + 3.52·14-s − 3.11·16-s + 0.783·17-s + 0.328·19-s − 10.0·20-s + 4.32·22-s + 9.05·23-s + 12.8·25-s − 9.98·26-s − 3.99·28-s + 0.158·31-s + 8.07·32-s − 1.63·34-s + 7.11·35-s − 1.11·37-s − 0.688·38-s + 3.30·40-s + 9.30·41-s − 1.00·43-s + ⋯ |
L(s) = 1 | − 1.47·2-s + 1.18·4-s − 1.88·5-s − 0.636·7-s − 0.276·8-s + 2.79·10-s − 0.622·11-s + 1.32·13-s + 0.941·14-s − 0.777·16-s + 0.189·17-s + 0.0754·19-s − 2.24·20-s + 0.921·22-s + 1.88·23-s + 2.56·25-s − 1.95·26-s − 0.755·28-s + 0.0283·31-s + 1.42·32-s − 0.280·34-s + 1.20·35-s − 0.182·37-s − 0.111·38-s + 0.523·40-s + 1.45·41-s − 0.153·43-s + ⋯ |
Λ(s)=(=(7569s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(7569s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.4815305578 |
L(21) |
≈ |
0.4815305578 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 29 | 1 |
good | 2 | 1+2.09T+2T2 |
| 5 | 1+4.22T+5T2 |
| 7 | 1+1.68T+7T2 |
| 11 | 1+2.06T+11T2 |
| 13 | 1−4.77T+13T2 |
| 17 | 1−0.783T+17T2 |
| 19 | 1−0.328T+19T2 |
| 23 | 1−9.05T+23T2 |
| 31 | 1−0.158T+31T2 |
| 37 | 1+1.11T+37T2 |
| 41 | 1−9.30T+41T2 |
| 43 | 1+1.00T+43T2 |
| 47 | 1−10.5T+47T2 |
| 53 | 1+5.39T+53T2 |
| 59 | 1+11.2T+59T2 |
| 61 | 1−2.11T+61T2 |
| 67 | 1−4.98T+67T2 |
| 71 | 1+1.82T+71T2 |
| 73 | 1−11.6T+73T2 |
| 79 | 1+8.47T+79T2 |
| 83 | 1−2.46T+83T2 |
| 89 | 1+10.0T+89T2 |
| 97 | 1+4.67T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.009527937789017319477025086495, −7.36509134172736299869489217754, −6.96291959543119620363763736922, −6.10678503368465372643847020250, −4.96200740904113207734406063449, −4.18106655826067159313173923705, −3.38099362895615812340330467427, −2.74340347721595922088946699742, −1.20667867883353681301510065083, −0.51335314235516420149401676383,
0.51335314235516420149401676383, 1.20667867883353681301510065083, 2.74340347721595922088946699742, 3.38099362895615812340330467427, 4.18106655826067159313173923705, 4.96200740904113207734406063449, 6.10678503368465372643847020250, 6.96291959543119620363763736922, 7.36509134172736299869489217754, 8.009527937789017319477025086495