L(s) = 1 | − 2.78·2-s + 3-s + 5.78·4-s − 0.430·5-s − 2.78·6-s + 7-s − 10.5·8-s + 9-s + 1.20·10-s − 4.67·11-s + 5.78·12-s + 4.61·13-s − 2.78·14-s − 0.430·15-s + 17.8·16-s + 5.52·17-s − 2.78·18-s − 2.49·20-s + 21-s + 13.0·22-s − 1.98·23-s − 10.5·24-s − 4.81·25-s − 12.8·26-s + 27-s + 5.78·28-s − 6.41·29-s + ⋯ |
L(s) = 1 | − 1.97·2-s + 0.577·3-s + 2.89·4-s − 0.192·5-s − 1.13·6-s + 0.377·7-s − 3.72·8-s + 0.333·9-s + 0.380·10-s − 1.40·11-s + 1.66·12-s + 1.27·13-s − 0.745·14-s − 0.111·15-s + 4.46·16-s + 1.33·17-s − 0.657·18-s − 0.557·20-s + 0.218·21-s + 2.77·22-s − 0.413·23-s − 2.15·24-s − 0.962·25-s − 2.52·26-s + 0.192·27-s + 1.09·28-s − 1.19·29-s + ⋯ |
Λ(s)=(=(7581s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(7581s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.9882011046 |
L(21) |
≈ |
0.9882011046 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 7 | 1−T |
| 19 | 1 |
good | 2 | 1+2.78T+2T2 |
| 5 | 1+0.430T+5T2 |
| 11 | 1+4.67T+11T2 |
| 13 | 1−4.61T+13T2 |
| 17 | 1−5.52T+17T2 |
| 23 | 1+1.98T+23T2 |
| 29 | 1+6.41T+29T2 |
| 31 | 1−6.95T+31T2 |
| 37 | 1−3.95T+37T2 |
| 41 | 1−0.487T+41T2 |
| 43 | 1+2.25T+43T2 |
| 47 | 1−7.10T+47T2 |
| 53 | 1−7.50T+53T2 |
| 59 | 1−2.68T+59T2 |
| 61 | 1+2.22T+61T2 |
| 67 | 1+0.358T+67T2 |
| 71 | 1−13.0T+71T2 |
| 73 | 1+1.77T+73T2 |
| 79 | 1+13.1T+79T2 |
| 83 | 1−2.40T+83T2 |
| 89 | 1+16.4T+89T2 |
| 97 | 1+3.22T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.023658275420515524088820610319, −7.64760624976741389103136464849, −6.92920499067228837633941384469, −5.90829601870201104322759564402, −5.53430529683176933979843754891, −3.97263465568242541579291356637, −3.13231418226514475838773813202, −2.40433078652648909510496114157, −1.57286477329095711094179835687, −0.66937907867223875519700999487,
0.66937907867223875519700999487, 1.57286477329095711094179835687, 2.40433078652648909510496114157, 3.13231418226514475838773813202, 3.97263465568242541579291356637, 5.53430529683176933979843754891, 5.90829601870201104322759564402, 6.92920499067228837633941384469, 7.64760624976741389103136464849, 8.023658275420515524088820610319