L(s) = 1 | + (0.959 − 0.281i)3-s + (0.142 + 0.989i)4-s + (−0.544 − 1.19i)5-s + (0.841 − 0.540i)9-s + (0.654 + 0.755i)11-s + (0.415 + 0.909i)12-s + (−0.857 − 0.989i)15-s + (−0.959 + 0.281i)16-s + (1.10 − 0.708i)20-s + (−0.654 − 0.755i)23-s + (−0.468 + 0.540i)25-s + (0.654 − 0.755i)27-s + (0.698 + 0.449i)31-s + (0.841 + 0.540i)33-s + (0.654 + 0.755i)36-s + (−1.80 − 0.822i)37-s + ⋯ |
L(s) = 1 | + (0.959 − 0.281i)3-s + (0.142 + 0.989i)4-s + (−0.544 − 1.19i)5-s + (0.841 − 0.540i)9-s + (0.654 + 0.755i)11-s + (0.415 + 0.909i)12-s + (−0.857 − 0.989i)15-s + (−0.959 + 0.281i)16-s + (1.10 − 0.708i)20-s + (−0.654 − 0.755i)23-s + (−0.468 + 0.540i)25-s + (0.654 − 0.755i)27-s + (0.698 + 0.449i)31-s + (0.841 + 0.540i)33-s + (0.654 + 0.755i)36-s + (−1.80 − 0.822i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 759 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.985 + 0.167i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 759 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.985 + 0.167i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.259786761\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.259786761\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.959 + 0.281i)T \) |
| 11 | \( 1 + (-0.654 - 0.755i)T \) |
| 23 | \( 1 + (0.654 + 0.755i)T \) |
good | 2 | \( 1 + (-0.142 - 0.989i)T^{2} \) |
| 5 | \( 1 + (0.544 + 1.19i)T + (-0.654 + 0.755i)T^{2} \) |
| 7 | \( 1 + (0.841 - 0.540i)T^{2} \) |
| 13 | \( 1 + (-0.841 - 0.540i)T^{2} \) |
| 17 | \( 1 + (0.959 + 0.281i)T^{2} \) |
| 19 | \( 1 + (-0.959 + 0.281i)T^{2} \) |
| 29 | \( 1 + (-0.959 - 0.281i)T^{2} \) |
| 31 | \( 1 + (-0.698 - 0.449i)T + (0.415 + 0.909i)T^{2} \) |
| 37 | \( 1 + (1.80 + 0.822i)T + (0.654 + 0.755i)T^{2} \) |
| 41 | \( 1 + (-0.654 + 0.755i)T^{2} \) |
| 43 | \( 1 + (0.415 - 0.909i)T^{2} \) |
| 47 | \( 1 - 1.81iT - T^{2} \) |
| 53 | \( 1 + (0.273 - 0.0801i)T + (0.841 - 0.540i)T^{2} \) |
| 59 | \( 1 + (0.557 - 1.89i)T + (-0.841 - 0.540i)T^{2} \) |
| 61 | \( 1 + (0.415 + 0.909i)T^{2} \) |
| 67 | \( 1 + (0.425 + 0.368i)T + (0.142 + 0.989i)T^{2} \) |
| 71 | \( 1 + (1.14 + 0.989i)T + (0.142 + 0.989i)T^{2} \) |
| 73 | \( 1 + (0.959 - 0.281i)T^{2} \) |
| 79 | \( 1 + (0.841 + 0.540i)T^{2} \) |
| 83 | \( 1 + (0.654 + 0.755i)T^{2} \) |
| 89 | \( 1 + (-1.61 + 1.03i)T + (0.415 - 0.909i)T^{2} \) |
| 97 | \( 1 + (1.65 - 0.755i)T + (0.654 - 0.755i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.39907543668218576076302340619, −9.190106398187520352676815178396, −8.818802799117354863527613955680, −7.988931455894788268670224082279, −7.39085575890482624132304394274, −6.41483789461924228818846850239, −4.62953953977017547443132414986, −4.13169368230537108057237909656, −3.01332629440400930167828346057, −1.66851182074270606768332203879,
1.82068606928102639317806062344, 3.10427308500204328268688528516, 3.86755288993258236671664488487, 5.16186917082149028258544852879, 6.39971705183491492453100326513, 7.01978389951912351677596866016, 8.043249648737376402116090207370, 8.913790189027861216309503947952, 9.887718951952190899246854234660, 10.39318469500331951905401857812