L(s) = 1 | + 1.59i·3-s + (−1.59 − 1.56i)5-s + 1.66i·7-s + 0.463·9-s + 5.56·11-s − 6.31i·13-s + (2.48 − 2.54i)15-s + 4.12i·17-s − 19-s − 2.64·21-s + 1.82i·23-s + (0.114 + 4.99i)25-s + 5.51i·27-s + 4.08·29-s + 6.61·31-s + ⋯ |
L(s) = 1 | + 0.919i·3-s + (−0.715 − 0.698i)5-s + 0.628i·7-s + 0.154·9-s + 1.67·11-s − 1.75i·13-s + (0.642 − 0.657i)15-s + 0.999i·17-s − 0.229·19-s − 0.577·21-s + 0.380i·23-s + (0.0228 + 0.999i)25-s + 1.06i·27-s + 0.759·29-s + 1.18·31-s + ⋯ |
Λ(s)=(=(760s/2ΓC(s)L(s)(0.698−0.715i)Λ(2−s)
Λ(s)=(=(760s/2ΓC(s+1/2)L(s)(0.698−0.715i)Λ(1−s)
Degree: |
2 |
Conductor: |
760
= 23⋅5⋅19
|
Sign: |
0.698−0.715i
|
Analytic conductor: |
6.06863 |
Root analytic conductor: |
2.46345 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ760(609,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 760, ( :1/2), 0.698−0.715i)
|
Particular Values
L(1) |
≈ |
1.40462+0.591230i |
L(21) |
≈ |
1.40462+0.591230i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(1.59+1.56i)T |
| 19 | 1+T |
good | 3 | 1−1.59iT−3T2 |
| 7 | 1−1.66iT−7T2 |
| 11 | 1−5.56T+11T2 |
| 13 | 1+6.31iT−13T2 |
| 17 | 1−4.12iT−17T2 |
| 23 | 1−1.82iT−23T2 |
| 29 | 1−4.08T+29T2 |
| 31 | 1−6.61T+31T2 |
| 37 | 1−9.66iT−37T2 |
| 41 | 1+4.61T+41T2 |
| 43 | 1−3.75iT−43T2 |
| 47 | 1+3.85iT−47T2 |
| 53 | 1+5.24iT−53T2 |
| 59 | 1−11.5T+59T2 |
| 61 | 1−8.02T+61T2 |
| 67 | 1−0.155iT−67T2 |
| 71 | 1+12.1T+71T2 |
| 73 | 1+0.795iT−73T2 |
| 79 | 1−7.18T+79T2 |
| 83 | 1+5.88iT−83T2 |
| 89 | 1+18.5T+89T2 |
| 97 | 1−2.77iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.22892243132131939814432430363, −9.720932829680840335506758582726, −8.529180525645778800779709902434, −8.360445848053891872653996964625, −6.93908069361247496266239138460, −5.84610157080938846926080604428, −4.88249879759487678289728892353, −4.04116832240462592217714432245, −3.22714023704461296145597557069, −1.23010730108682489659018207044,
1.01744621884474014362479267323, 2.34828176369544434625206606311, 3.91601094573919204294430901812, 4.40408729270776271137497397592, 6.33618770564950780982799802877, 6.93300309704741332280698591749, 7.21694408319060245980913450831, 8.434641436070484929294332894114, 9.316965018973412042982228443894, 10.26537963225840132677524599825