Properties

Label 2-760-5.4-c1-0-10
Degree $2$
Conductor $760$
Sign $0.698 - 0.715i$
Analytic cond. $6.06863$
Root an. cond. $2.46345$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.59i·3-s + (−1.59 − 1.56i)5-s + 1.66i·7-s + 0.463·9-s + 5.56·11-s − 6.31i·13-s + (2.48 − 2.54i)15-s + 4.12i·17-s − 19-s − 2.64·21-s + 1.82i·23-s + (0.114 + 4.99i)25-s + 5.51i·27-s + 4.08·29-s + 6.61·31-s + ⋯
L(s)  = 1  + 0.919i·3-s + (−0.715 − 0.698i)5-s + 0.628i·7-s + 0.154·9-s + 1.67·11-s − 1.75i·13-s + (0.642 − 0.657i)15-s + 0.999i·17-s − 0.229·19-s − 0.577·21-s + 0.380i·23-s + (0.0228 + 0.999i)25-s + 1.06i·27-s + 0.759·29-s + 1.18·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.698 - 0.715i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.698 - 0.715i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(760\)    =    \(2^{3} \cdot 5 \cdot 19\)
Sign: $0.698 - 0.715i$
Analytic conductor: \(6.06863\)
Root analytic conductor: \(2.46345\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{760} (609, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 760,\ (\ :1/2),\ 0.698 - 0.715i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.40462 + 0.591230i\)
\(L(\frac12)\) \(\approx\) \(1.40462 + 0.591230i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (1.59 + 1.56i)T \)
19 \( 1 + T \)
good3 \( 1 - 1.59iT - 3T^{2} \)
7 \( 1 - 1.66iT - 7T^{2} \)
11 \( 1 - 5.56T + 11T^{2} \)
13 \( 1 + 6.31iT - 13T^{2} \)
17 \( 1 - 4.12iT - 17T^{2} \)
23 \( 1 - 1.82iT - 23T^{2} \)
29 \( 1 - 4.08T + 29T^{2} \)
31 \( 1 - 6.61T + 31T^{2} \)
37 \( 1 - 9.66iT - 37T^{2} \)
41 \( 1 + 4.61T + 41T^{2} \)
43 \( 1 - 3.75iT - 43T^{2} \)
47 \( 1 + 3.85iT - 47T^{2} \)
53 \( 1 + 5.24iT - 53T^{2} \)
59 \( 1 - 11.5T + 59T^{2} \)
61 \( 1 - 8.02T + 61T^{2} \)
67 \( 1 - 0.155iT - 67T^{2} \)
71 \( 1 + 12.1T + 71T^{2} \)
73 \( 1 + 0.795iT - 73T^{2} \)
79 \( 1 - 7.18T + 79T^{2} \)
83 \( 1 + 5.88iT - 83T^{2} \)
89 \( 1 + 18.5T + 89T^{2} \)
97 \( 1 - 2.77iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.22892243132131939814432430363, −9.720932829680840335506758582726, −8.529180525645778800779709902434, −8.360445848053891872653996964625, −6.93908069361247496266239138460, −5.84610157080938846926080604428, −4.88249879759487678289728892353, −4.04116832240462592217714432245, −3.22714023704461296145597557069, −1.23010730108682489659018207044, 1.01744621884474014362479267323, 2.34828176369544434625206606311, 3.91601094573919204294430901812, 4.40408729270776271137497397592, 6.33618770564950780982799802877, 6.93300309704741332280698591749, 7.21694408319060245980913450831, 8.434641436070484929294332894114, 9.316965018973412042982228443894, 10.26537963225840132677524599825

Graph of the $Z$-function along the critical line