Properties

Label 2-7600-1.1-c1-0-146
Degree $2$
Conductor $7600$
Sign $-1$
Analytic cond. $60.6863$
Root an. cond. $7.79014$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.806·3-s + 3.35·7-s − 2.35·9-s − 0.962·11-s − 6.15·13-s + 6.31·17-s + 19-s + 2.70·21-s − 4.96·23-s − 4.31·27-s − 3.61·29-s + 5.92·31-s − 0.775·33-s − 10.1·37-s − 4.96·39-s + 6.31·41-s − 4.12·43-s + 3.35·47-s + 4.22·49-s + 5.08·51-s − 1.84·53-s + 0.806·57-s + 6.38·59-s − 11.2·61-s − 7.87·63-s − 6.73·67-s − 4·69-s + ⋯
L(s)  = 1  + 0.465·3-s + 1.26·7-s − 0.783·9-s − 0.290·11-s − 1.70·13-s + 1.53·17-s + 0.229·19-s + 0.589·21-s − 1.03·23-s − 0.829·27-s − 0.670·29-s + 1.06·31-s − 0.135·33-s − 1.66·37-s − 0.794·39-s + 0.985·41-s − 0.629·43-s + 0.488·47-s + 0.603·49-s + 0.712·51-s − 0.253·53-s + 0.106·57-s + 0.831·59-s − 1.44·61-s − 0.992·63-s − 0.822·67-s − 0.481·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7600\)    =    \(2^{4} \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(60.6863\)
Root analytic conductor: \(7.79014\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 - T \)
good3 \( 1 - 0.806T + 3T^{2} \)
7 \( 1 - 3.35T + 7T^{2} \)
11 \( 1 + 0.962T + 11T^{2} \)
13 \( 1 + 6.15T + 13T^{2} \)
17 \( 1 - 6.31T + 17T^{2} \)
23 \( 1 + 4.96T + 23T^{2} \)
29 \( 1 + 3.61T + 29T^{2} \)
31 \( 1 - 5.92T + 31T^{2} \)
37 \( 1 + 10.1T + 37T^{2} \)
41 \( 1 - 6.31T + 41T^{2} \)
43 \( 1 + 4.12T + 43T^{2} \)
47 \( 1 - 3.35T + 47T^{2} \)
53 \( 1 + 1.84T + 53T^{2} \)
59 \( 1 - 6.38T + 59T^{2} \)
61 \( 1 + 11.2T + 61T^{2} \)
67 \( 1 + 6.73T + 67T^{2} \)
71 \( 1 - 0.775T + 71T^{2} \)
73 \( 1 + 0.387T + 73T^{2} \)
79 \( 1 - 0.836T + 79T^{2} \)
83 \( 1 + 7.03T + 83T^{2} \)
89 \( 1 - 7.08T + 89T^{2} \)
97 \( 1 + 10.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.79316028156094409771047002864, −7.11573431876900778730197185024, −5.95063211006358843994494040469, −5.32041547949961066432201412079, −4.85229315040019103784762671500, −3.90672671260561047441199816075, −2.97922040990560593098819031330, −2.31612856328929913919517548575, −1.44298431569799403367677144005, 0, 1.44298431569799403367677144005, 2.31612856328929913919517548575, 2.97922040990560593098819031330, 3.90672671260561047441199816075, 4.85229315040019103784762671500, 5.32041547949961066432201412079, 5.95063211006358843994494040469, 7.11573431876900778730197185024, 7.79316028156094409771047002864

Graph of the $Z$-function along the critical line