Properties

Label 2-7600-1.1-c1-0-51
Degree $2$
Conductor $7600$
Sign $-1$
Analytic cond. $60.6863$
Root an. cond. $7.79014$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.70·3-s − 3.77·7-s + 4.31·9-s − 4.71·11-s − 5.44·13-s − 2.40·17-s − 19-s + 10.2·21-s − 4.38·23-s − 3.55·27-s + 9.05·29-s + 9.92·31-s + 12.7·33-s + 10.0·37-s + 14.7·39-s + 1.11·41-s + 12.1·43-s − 6.72·47-s + 7.28·49-s + 6.51·51-s + 4.34·53-s + 2.70·57-s + 4.03·59-s − 9.14·61-s − 16.3·63-s − 4.39·67-s + 11.8·69-s + ⋯
L(s)  = 1  − 1.56·3-s − 1.42·7-s + 1.43·9-s − 1.42·11-s − 1.50·13-s − 0.584·17-s − 0.229·19-s + 2.23·21-s − 0.915·23-s − 0.684·27-s + 1.68·29-s + 1.78·31-s + 2.22·33-s + 1.65·37-s + 2.35·39-s + 0.174·41-s + 1.84·43-s − 0.980·47-s + 1.04·49-s + 0.912·51-s + 0.597·53-s + 0.358·57-s + 0.525·59-s − 1.17·61-s − 2.05·63-s − 0.537·67-s + 1.42·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7600\)    =    \(2^{4} \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(60.6863\)
Root analytic conductor: \(7.79014\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 + T \)
good3 \( 1 + 2.70T + 3T^{2} \)
7 \( 1 + 3.77T + 7T^{2} \)
11 \( 1 + 4.71T + 11T^{2} \)
13 \( 1 + 5.44T + 13T^{2} \)
17 \( 1 + 2.40T + 17T^{2} \)
23 \( 1 + 4.38T + 23T^{2} \)
29 \( 1 - 9.05T + 29T^{2} \)
31 \( 1 - 9.92T + 31T^{2} \)
37 \( 1 - 10.0T + 37T^{2} \)
41 \( 1 - 1.11T + 41T^{2} \)
43 \( 1 - 12.1T + 43T^{2} \)
47 \( 1 + 6.72T + 47T^{2} \)
53 \( 1 - 4.34T + 53T^{2} \)
59 \( 1 - 4.03T + 59T^{2} \)
61 \( 1 + 9.14T + 61T^{2} \)
67 \( 1 + 4.39T + 67T^{2} \)
71 \( 1 + 7.90T + 71T^{2} \)
73 \( 1 - 3.07T + 73T^{2} \)
79 \( 1 + 11.3T + 79T^{2} \)
83 \( 1 - 4.37T + 83T^{2} \)
89 \( 1 - 2.53T + 89T^{2} \)
97 \( 1 + 0.302T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.41610855718915745685750641469, −6.51494626265814392592905949932, −6.24540954231579933786453775790, −5.54267460713545330259142745286, −4.68452823174844773449320222368, −4.36230357836642365054978148586, −2.85141467397530161618638254940, −2.49471826207213807371905269683, −0.73001629642707044811614098368, 0, 0.73001629642707044811614098368, 2.49471826207213807371905269683, 2.85141467397530161618638254940, 4.36230357836642365054978148586, 4.68452823174844773449320222368, 5.54267460713545330259142745286, 6.24540954231579933786453775790, 6.51494626265814392592905949932, 7.41610855718915745685750641469

Graph of the $Z$-function along the critical line