Properties

Label 2-7605-1.1-c1-0-153
Degree $2$
Conductor $7605$
Sign $-1$
Analytic cond. $60.7262$
Root an. cond. $7.79270$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.73·2-s + 5.46·4-s + 5-s − 1.73·7-s − 9.46·8-s − 2.73·10-s − 2·11-s + 4.73·14-s + 14.9·16-s + 2.73·17-s + 7.46·19-s + 5.46·20-s + 5.46·22-s − 2·23-s + 25-s − 9.46·28-s + 6.73·29-s + 2.46·31-s − 21.8·32-s − 7.46·34-s − 1.73·35-s − 10.3·37-s − 20.3·38-s − 9.46·40-s − 7.26·41-s + 1.19·43-s − 10.9·44-s + ⋯
L(s)  = 1  − 1.93·2-s + 2.73·4-s + 0.447·5-s − 0.654·7-s − 3.34·8-s − 0.863·10-s − 0.603·11-s + 1.26·14-s + 3.73·16-s + 0.662·17-s + 1.71·19-s + 1.22·20-s + 1.16·22-s − 0.417·23-s + 0.200·25-s − 1.78·28-s + 1.25·29-s + 0.442·31-s − 3.86·32-s − 1.28·34-s − 0.292·35-s − 1.70·37-s − 3.30·38-s − 1.49·40-s − 1.13·41-s + 0.182·43-s − 1.64·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7605 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7605 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7605\)    =    \(3^{2} \cdot 5 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(60.7262\)
Root analytic conductor: \(7.79270\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7605,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - T \)
13 \( 1 \)
good2 \( 1 + 2.73T + 2T^{2} \)
7 \( 1 + 1.73T + 7T^{2} \)
11 \( 1 + 2T + 11T^{2} \)
17 \( 1 - 2.73T + 17T^{2} \)
19 \( 1 - 7.46T + 19T^{2} \)
23 \( 1 + 2T + 23T^{2} \)
29 \( 1 - 6.73T + 29T^{2} \)
31 \( 1 - 2.46T + 31T^{2} \)
37 \( 1 + 10.3T + 37T^{2} \)
41 \( 1 + 7.26T + 41T^{2} \)
43 \( 1 - 1.19T + 43T^{2} \)
47 \( 1 + 10.1T + 47T^{2} \)
53 \( 1 - 2.53T + 53T^{2} \)
59 \( 1 - 5.66T + 59T^{2} \)
61 \( 1 + 15.3T + 61T^{2} \)
67 \( 1 + 1.19T + 67T^{2} \)
71 \( 1 + 1.26T + 71T^{2} \)
73 \( 1 - 1.73T + 73T^{2} \)
79 \( 1 + 11T + 79T^{2} \)
83 \( 1 + 10.9T + 83T^{2} \)
89 \( 1 - 8.73T + 89T^{2} \)
97 \( 1 - 5.19T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.67214766810444497897160995480, −7.05273769763900461478915222358, −6.45125998160677866778815476544, −5.74743344142409431839531473547, −4.99461128162831198628129409625, −3.24854940597659777938175090005, −3.01760017158330528165054340899, −1.88714424334233149536197545353, −1.10311351721939928947295414415, 0, 1.10311351721939928947295414415, 1.88714424334233149536197545353, 3.01760017158330528165054340899, 3.24854940597659777938175090005, 4.99461128162831198628129409625, 5.74743344142409431839531473547, 6.45125998160677866778815476544, 7.05273769763900461478915222358, 7.67214766810444497897160995480

Graph of the $Z$-function along the critical line