L(s) = 1 | + 0.134i·2-s + 1.98·4-s + (1.29 − 1.82i)5-s − 2.86i·7-s + 0.536i·8-s + (0.245 + 0.173i)10-s + 3.84·11-s + 6.22i·13-s + 0.385·14-s + 3.89·16-s − i·17-s − 6.62·19-s + (2.55 − 3.61i)20-s + 0.517i·22-s − 4.51i·23-s + ⋯ |
L(s) = 1 | + 0.0951i·2-s + 0.990·4-s + (0.576 − 0.816i)5-s − 1.08i·7-s + 0.189i·8-s + (0.0777 + 0.0549i)10-s + 1.15·11-s + 1.72i·13-s + 0.103·14-s + 0.972·16-s − 0.242i·17-s − 1.51·19-s + (0.571 − 0.809i)20-s + 0.110i·22-s − 0.942i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 765 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.816 + 0.576i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 765 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.816 + 0.576i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.09736 - 0.666122i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.09736 - 0.666122i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-1.29 + 1.82i)T \) |
| 17 | \( 1 + iT \) |
good | 2 | \( 1 - 0.134iT - 2T^{2} \) |
| 7 | \( 1 + 2.86iT - 7T^{2} \) |
| 11 | \( 1 - 3.84T + 11T^{2} \) |
| 13 | \( 1 - 6.22iT - 13T^{2} \) |
| 19 | \( 1 + 6.62T + 19T^{2} \) |
| 23 | \( 1 + 4.51iT - 23T^{2} \) |
| 29 | \( 1 + 0.658T + 29T^{2} \) |
| 31 | \( 1 - 3.49T + 31T^{2} \) |
| 37 | \( 1 + 3.34iT - 37T^{2} \) |
| 41 | \( 1 + 2.04T + 41T^{2} \) |
| 43 | \( 1 + 1.29iT - 43T^{2} \) |
| 47 | \( 1 - 6.22iT - 47T^{2} \) |
| 53 | \( 1 - 9.92iT - 53T^{2} \) |
| 59 | \( 1 + 2T + 59T^{2} \) |
| 61 | \( 1 + 7.61T + 61T^{2} \) |
| 67 | \( 1 + 0.257iT - 67T^{2} \) |
| 71 | \( 1 + 1.18T + 71T^{2} \) |
| 73 | \( 1 - 3.26iT - 73T^{2} \) |
| 79 | \( 1 - 4.99T + 79T^{2} \) |
| 83 | \( 1 + 7.91iT - 83T^{2} \) |
| 89 | \( 1 - 12.8T + 89T^{2} \) |
| 97 | \( 1 - 4.08iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.33855322283161111029222630801, −9.317878060558961499575708037195, −8.667073361557845471635792401869, −7.49633888442081760630383927092, −6.53702311688600673955239364443, −6.25235606743853251275429731171, −4.61126482439666627031433845377, −4.00115573920311044021990030987, −2.24493872714039761691751471878, −1.27056794307376461034071194360,
1.73276468480461995781299047156, 2.70774650939252506243776706012, 3.57936717098165328086042245843, 5.37998921030838786217479970310, 6.14354007244576628841618845771, 6.67563231815888736036945884215, 7.80208468783366213576616201742, 8.686678639561360744773331600356, 9.772966782973070512234452924276, 10.45360174132583951588833411568