L(s) = 1 | + 0.232·2-s − 1.94·4-s + (−2.04 − 0.898i)5-s + (−1.46 − 1.46i)7-s − 0.917·8-s + (−0.475 − 0.208i)10-s + (0.339 − 0.339i)11-s + 4.07i·13-s + (−0.339 − 0.339i)14-s + 3.67·16-s + (3.75 − 1.69i)17-s + 4i·19-s + (3.98 + 1.74i)20-s + (0.0788 − 0.0788i)22-s + (5.76 + 5.76i)23-s + ⋯ |
L(s) = 1 | + 0.164·2-s − 0.972·4-s + (−0.915 − 0.401i)5-s + (−0.552 − 0.552i)7-s − 0.324·8-s + (−0.150 − 0.0660i)10-s + (0.102 − 0.102i)11-s + 1.12i·13-s + (−0.0907 − 0.0907i)14-s + 0.919·16-s + (0.911 − 0.410i)17-s + 0.917i·19-s + (0.891 + 0.390i)20-s + (0.0168 − 0.0168i)22-s + (1.20 + 1.20i)23-s + ⋯ |
Λ(s)=(=(765s/2ΓC(s)L(s)(0.607−0.794i)Λ(2−s)
Λ(s)=(=(765s/2ΓC(s+1/2)L(s)(0.607−0.794i)Λ(1−s)
Degree: |
2 |
Conductor: |
765
= 32⋅5⋅17
|
Sign: |
0.607−0.794i
|
Analytic conductor: |
6.10855 |
Root analytic conductor: |
2.47154 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ765(64,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 765, ( :1/2), 0.607−0.794i)
|
Particular Values
L(1) |
≈ |
0.724634+0.357946i |
L(21) |
≈ |
0.724634+0.357946i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(2.04+0.898i)T |
| 17 | 1+(−3.75+1.69i)T |
good | 2 | 1−0.232T+2T2 |
| 7 | 1+(1.46+1.46i)T+7iT2 |
| 11 | 1+(−0.339+0.339i)T−11iT2 |
| 13 | 1−4.07iT−13T2 |
| 19 | 1−4iT−19T2 |
| 23 | 1+(−5.76−5.76i)T+23iT2 |
| 29 | 1+(0.732+0.732i)T+29iT2 |
| 31 | 1+(4.28+4.28i)T+31iT2 |
| 37 | 1+(−0.917+0.917i)T−37iT2 |
| 41 | 1+(7.62−7.62i)T−41iT2 |
| 43 | 1−7.45T+43T2 |
| 47 | 1−3.60iT−47T2 |
| 53 | 1−6.14T+53T2 |
| 59 | 1−6iT−59T2 |
| 61 | 1+(4−4i)T−61iT2 |
| 67 | 1−3.14iT−67T2 |
| 71 | 1+(1.28+1.28i)T+71iT2 |
| 73 | 1+(8.60−8.60i)T−73iT2 |
| 79 | 1+(−7.23+7.23i)T−79iT2 |
| 83 | 1−2.23T+83T2 |
| 89 | 1−9.37T+89T2 |
| 97 | 1+(−11.8+11.8i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.31239634157753237174309823132, −9.429419355293561911431911521898, −8.918113907410682078390419636505, −7.81294850829956257616368989307, −7.20204204076868608064056265355, −5.88453109444025315081882493050, −4.88847322620778648717832215712, −3.96274997932251519919968463927, −3.36371808924042593337210169734, −1.08730704033042520704374628251,
0.51129865419670296034425426750, 2.92069822875406816432002433695, 3.59230682152183154950094307132, 4.78033347189367132984270562449, 5.58800008722968150093480647953, 6.74196647877672722293638843492, 7.70532835170448388113405443862, 8.595461982017109714244583777262, 9.174937277298127336347124142679, 10.31195839288421472458043884424