L(s) = 1 | + 1.73i·3-s − 7.98·5-s + 2.13i·7-s − 2.99·9-s − 8i·11-s − 11.6·13-s − 13.8i·15-s + 11.8·17-s − 14.9i·19-s − 3.70·21-s − 4.27i·23-s + 38.7·25-s − 5.19i·27-s − 0.573·29-s + 57.4i·31-s + ⋯ |
L(s) = 1 | + 0.577i·3-s − 1.59·5-s + 0.305i·7-s − 0.333·9-s − 0.727i·11-s − 0.898·13-s − 0.921i·15-s + 0.697·17-s − 0.785i·19-s − 0.176·21-s − 0.185i·23-s + 1.54·25-s − 0.192i·27-s − 0.0197·29-s + 1.85i·31-s + ⋯ |
Λ(s)=(=(768s/2ΓC(s)L(s)Λ(3−s)
Λ(s)=(=(768s/2ΓC(s+1)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
768
= 28⋅3
|
Sign: |
1
|
Analytic conductor: |
20.9264 |
Root analytic conductor: |
4.57454 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ768(511,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 768, ( :1), 1)
|
Particular Values
L(23) |
≈ |
1.025456778 |
L(21) |
≈ |
1.025456778 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−1.73iT |
good | 5 | 1+7.98T+25T2 |
| 7 | 1−2.13iT−49T2 |
| 11 | 1+8iT−121T2 |
| 13 | 1+11.6T+169T2 |
| 17 | 1−11.8T+289T2 |
| 19 | 1+14.9iT−361T2 |
| 23 | 1+4.27iT−529T2 |
| 29 | 1+0.573T+841T2 |
| 31 | 1−57.4iT−961T2 |
| 37 | 1−27.6T+1.36e3T2 |
| 41 | 1−31.5T+1.68e3T2 |
| 43 | 1−28.7iT−1.84e3T2 |
| 47 | 1+59.5iT−2.20e3T2 |
| 53 | 1−31.3T+2.80e3T2 |
| 59 | 1+52.7iT−3.48e3T2 |
| 61 | 1−59.5T+3.72e3T2 |
| 67 | 1−84.7iT−4.48e3T2 |
| 71 | 1+42.4iT−5.04e3T2 |
| 73 | 1−5.42T+5.32e3T2 |
| 79 | 1+44.6iT−6.24e3T2 |
| 83 | 1+67.7iT−6.88e3T2 |
| 89 | 1−133.T+7.92e3T2 |
| 97 | 1−97.1T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.24126743739568923038195329793, −9.133778896017319828822491654897, −8.433564469040277883159890558352, −7.64713346140218961470575807344, −6.78909535568204383279801060368, −5.43280517766058270849916997483, −4.60832185351745339096050424298, −3.63713204223513886147426660655, −2.79055906189137551391559469443, −0.56175459791356687409147696349,
0.76173144431404712526893897534, 2.42444455581311756825398730990, 3.74323843721123280091270541575, 4.47129934989190525191808470133, 5.71113277820536987021444122758, 6.95873056872034355288707995855, 7.74231349913894543583494049298, 7.895134709727914753901305862285, 9.244659856924934785682893514864, 10.15052448045089152006133839070