Properties

Label 2-88e2-1.1-c1-0-96
Degree $2$
Conductor $7744$
Sign $-1$
Analytic cond. $61.8361$
Root an. cond. $7.86359$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.23·3-s − 5-s − 2·7-s + 2.00·9-s + 4.47·13-s + 2.23·15-s − 4.47·17-s + 6·19-s + 4.47·21-s + 2.23·23-s − 4·25-s + 2.23·27-s − 8.94·29-s + 2.23·31-s + 2·35-s − 7·37-s − 10.0·39-s − 4.47·41-s − 4·43-s − 2.00·45-s − 8.94·47-s − 3·49-s + 10.0·51-s + 6·53-s − 13.4·57-s + 11.1·59-s + 8.94·61-s + ⋯
L(s)  = 1  − 1.29·3-s − 0.447·5-s − 0.755·7-s + 0.666·9-s + 1.24·13-s + 0.577·15-s − 1.08·17-s + 1.37·19-s + 0.975·21-s + 0.466·23-s − 0.800·25-s + 0.430·27-s − 1.66·29-s + 0.401·31-s + 0.338·35-s − 1.15·37-s − 1.60·39-s − 0.698·41-s − 0.609·43-s − 0.298·45-s − 1.30·47-s − 0.428·49-s + 1.40·51-s + 0.824·53-s − 1.77·57-s + 1.45·59-s + 1.14·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7744\)    =    \(2^{6} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(61.8361\)
Root analytic conductor: \(7.86359\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7744,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
good3 \( 1 + 2.23T + 3T^{2} \)
5 \( 1 + T + 5T^{2} \)
7 \( 1 + 2T + 7T^{2} \)
13 \( 1 - 4.47T + 13T^{2} \)
17 \( 1 + 4.47T + 17T^{2} \)
19 \( 1 - 6T + 19T^{2} \)
23 \( 1 - 2.23T + 23T^{2} \)
29 \( 1 + 8.94T + 29T^{2} \)
31 \( 1 - 2.23T + 31T^{2} \)
37 \( 1 + 7T + 37T^{2} \)
41 \( 1 + 4.47T + 41T^{2} \)
43 \( 1 + 4T + 43T^{2} \)
47 \( 1 + 8.94T + 47T^{2} \)
53 \( 1 - 6T + 53T^{2} \)
59 \( 1 - 11.1T + 59T^{2} \)
61 \( 1 - 8.94T + 61T^{2} \)
67 \( 1 - 11.1T + 67T^{2} \)
71 \( 1 - 6.70T + 71T^{2} \)
73 \( 1 - 13.4T + 73T^{2} \)
79 \( 1 - 4T + 79T^{2} \)
83 \( 1 - 16T + 83T^{2} \)
89 \( 1 + 9T + 89T^{2} \)
97 \( 1 - 13T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.28611596361409588870020032068, −6.62959227496604694603637158077, −6.25118139849277202438466544731, −5.33066739748235138209750570993, −5.01310558201113139047297274281, −3.64684345307078130715520655152, −3.58241100535013479123316662261, −2.11038101479190193356541012198, −0.933007966542278322497195998809, 0, 0.933007966542278322497195998809, 2.11038101479190193356541012198, 3.58241100535013479123316662261, 3.64684345307078130715520655152, 5.01310558201113139047297274281, 5.33066739748235138209750570993, 6.25118139849277202438466544731, 6.62959227496604694603637158077, 7.28611596361409588870020032068

Graph of the $Z$-function along the critical line