L(s) = 1 | + 3-s − 3·5-s − 2·7-s − 9-s − 2·13-s − 3·15-s − 4·17-s + 8·19-s − 2·21-s − 9·23-s + 25-s − 2·29-s + 7·31-s + 6·35-s + 11·37-s − 2·39-s − 6·41-s + 6·43-s + 3·45-s − 16·47-s + 6·49-s − 4·51-s − 8·53-s + 8·57-s − 5·59-s − 6·61-s + 2·63-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 1.34·5-s − 0.755·7-s − 1/3·9-s − 0.554·13-s − 0.774·15-s − 0.970·17-s + 1.83·19-s − 0.436·21-s − 1.87·23-s + 1/5·25-s − 0.371·29-s + 1.25·31-s + 1.01·35-s + 1.80·37-s − 0.320·39-s − 0.937·41-s + 0.914·43-s + 0.447·45-s − 2.33·47-s + 6/7·49-s − 0.560·51-s − 1.09·53-s + 1.05·57-s − 0.650·59-s − 0.768·61-s + 0.251·63-s + ⋯ |
Λ(s)=(=(59969536s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(59969536s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
59969536
= 212⋅114
|
Sign: |
1
|
Analytic conductor: |
3823.70 |
Root analytic conductor: |
7.86359 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 59969536, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 11 | | 1 |
good | 3 | D4 | 1−T+2T2−pT3+p2T4 |
| 5 | C22 | 1+3T+8T2+3pT3+p2T4 |
| 7 | D4 | 1+2T−2T2+2pT3+p2T4 |
| 13 | C4 | 1+2T+10T2+2pT3+p2T4 |
| 17 | C2 | (1+2T+pT2)2 |
| 19 | C2 | (1−4T+pT2)2 |
| 23 | D4 | 1+9T+62T2+9pT3+p2T4 |
| 29 | D4 | 1+2T+42T2+2pT3+p2T4 |
| 31 | D4 | 1−7T+70T2−7pT3+p2T4 |
| 37 | D4 | 1−11T+100T2−11pT3+p2T4 |
| 41 | D4 | 1+6T+74T2+6pT3+p2T4 |
| 43 | D4 | 1−6T+78T2−6pT3+p2T4 |
| 47 | C2 | (1+8T+pT2)2 |
| 53 | D4 | 1+8T+54T2+8pT3+p2T4 |
| 59 | D4 | 1+5T+18T2+5pT3+p2T4 |
| 61 | D4 | 1+6T+114T2+6pT3+p2T4 |
| 67 | D4 | 1−15T+186T2−15pT3+p2T4 |
| 71 | D4 | 1−5T+110T2−5pT3+p2T4 |
| 73 | D4 | 1+2T+130T2+2pT3+p2T4 |
| 79 | D4 | 1+14T+190T2+14pT3+p2T4 |
| 83 | D4 | 1+10T+174T2+10pT3+p2T4 |
| 89 | D4 | 1+7T+152T2+7pT3+p2T4 |
| 97 | D4 | 1−27T+372T2−27pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.71012333098053052243334732074, −7.67200345678067202383208474597, −6.95391682314268620118293528732, −6.79036160709965208373862507876, −6.26968558320890098744015448234, −6.09392548294987421341637371512, −5.63728208451714129528673518946, −5.17936817038298565910034740892, −4.75013249513086591301762770704, −4.31589894052272916640617190924, −4.19624347706959284344875058661, −3.63640730214586215705516311289, −3.18840850231594885172768986287, −3.15116864201567348428547078141, −2.49210957468196495633600849714, −2.24803446888915899261214553519, −1.51611110382579419061686343950, −0.914593848108578311340633650519, 0, 0,
0.914593848108578311340633650519, 1.51611110382579419061686343950, 2.24803446888915899261214553519, 2.49210957468196495633600849714, 3.15116864201567348428547078141, 3.18840850231594885172768986287, 3.63640730214586215705516311289, 4.19624347706959284344875058661, 4.31589894052272916640617190924, 4.75013249513086591301762770704, 5.17936817038298565910034740892, 5.63728208451714129528673518946, 6.09392548294987421341637371512, 6.26968558320890098744015448234, 6.79036160709965208373862507876, 6.95391682314268620118293528732, 7.67200345678067202383208474597, 7.71012333098053052243334732074