Properties

Label 2-88e2-1.1-c1-0-27
Degree $2$
Conductor $7744$
Sign $1$
Analytic cond. $61.8361$
Root an. cond. $7.86359$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.91·3-s − 3.40·5-s − 0.869·7-s + 0.683·9-s − 2.80·13-s − 6.53·15-s − 7.29·17-s + 2.38·19-s − 1.66·21-s − 7.44·23-s + 6.60·25-s − 4.44·27-s + 7.34·29-s + 2.64·31-s + 2.96·35-s − 1.03·37-s − 5.38·39-s + 2.89·41-s + 2.18·43-s − 2.32·45-s + 3.94·47-s − 6.24·49-s − 13.9·51-s + 7.11·53-s + 4.57·57-s + 8.09·59-s + 2.69·61-s + ⋯
L(s)  = 1  + 1.10·3-s − 1.52·5-s − 0.328·7-s + 0.227·9-s − 0.777·13-s − 1.68·15-s − 1.76·17-s + 0.546·19-s − 0.363·21-s − 1.55·23-s + 1.32·25-s − 0.855·27-s + 1.36·29-s + 0.474·31-s + 0.500·35-s − 0.169·37-s − 0.861·39-s + 0.451·41-s + 0.333·43-s − 0.346·45-s + 0.575·47-s − 0.892·49-s − 1.95·51-s + 0.977·53-s + 0.605·57-s + 1.05·59-s + 0.344·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7744\)    =    \(2^{6} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(61.8361\)
Root analytic conductor: \(7.86359\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7744,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.172033235\)
\(L(\frac12)\) \(\approx\) \(1.172033235\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
good3 \( 1 - 1.91T + 3T^{2} \)
5 \( 1 + 3.40T + 5T^{2} \)
7 \( 1 + 0.869T + 7T^{2} \)
13 \( 1 + 2.80T + 13T^{2} \)
17 \( 1 + 7.29T + 17T^{2} \)
19 \( 1 - 2.38T + 19T^{2} \)
23 \( 1 + 7.44T + 23T^{2} \)
29 \( 1 - 7.34T + 29T^{2} \)
31 \( 1 - 2.64T + 31T^{2} \)
37 \( 1 + 1.03T + 37T^{2} \)
41 \( 1 - 2.89T + 41T^{2} \)
43 \( 1 - 2.18T + 43T^{2} \)
47 \( 1 - 3.94T + 47T^{2} \)
53 \( 1 - 7.11T + 53T^{2} \)
59 \( 1 - 8.09T + 59T^{2} \)
61 \( 1 - 2.69T + 61T^{2} \)
67 \( 1 + 13.7T + 67T^{2} \)
71 \( 1 - 1.92T + 71T^{2} \)
73 \( 1 - 4.99T + 73T^{2} \)
79 \( 1 + 13.4T + 79T^{2} \)
83 \( 1 + 0.194T + 83T^{2} \)
89 \( 1 - 4.18T + 89T^{2} \)
97 \( 1 - 4.99T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.919934890089290431345206136143, −7.36008999947329897185512137965, −6.74622483801447761617597273796, −5.85540996675591587639586955535, −4.64081560877609798169194922474, −4.24243471372062521845058281792, −3.49773145246734875997783173757, −2.76131642982116377210557614307, −2.10546178935948615200050900933, −0.47851881326083029533507371912, 0.47851881326083029533507371912, 2.10546178935948615200050900933, 2.76131642982116377210557614307, 3.49773145246734875997783173757, 4.24243471372062521845058281792, 4.64081560877609798169194922474, 5.85540996675591587639586955535, 6.74622483801447761617597273796, 7.36008999947329897185512137965, 7.919934890089290431345206136143

Graph of the $Z$-function along the critical line