L(s) = 1 | − 3-s + 9-s − 13-s − 2·17-s − 4·19-s − 27-s + 6·29-s + 2·37-s + 39-s + 6·41-s + 12·43-s + 4·47-s − 7·49-s + 2·51-s − 6·53-s + 4·57-s − 8·59-s − 2·61-s − 4·67-s − 12·71-s + 14·73-s + 81-s − 8·83-s − 6·87-s − 18·89-s + 6·97-s + 14·101-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1/3·9-s − 0.277·13-s − 0.485·17-s − 0.917·19-s − 0.192·27-s + 1.11·29-s + 0.328·37-s + 0.160·39-s + 0.937·41-s + 1.82·43-s + 0.583·47-s − 49-s + 0.280·51-s − 0.824·53-s + 0.529·57-s − 1.04·59-s − 0.256·61-s − 0.488·67-s − 1.42·71-s + 1.63·73-s + 1/9·81-s − 0.878·83-s − 0.643·87-s − 1.90·89-s + 0.609·97-s + 1.39·101-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + T \) |
good | 7 | \( 1 + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 17 | \( 1 + 2 T + p T^{2} \) |
| 19 | \( 1 + 4 T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 - 6 T + p T^{2} \) |
| 31 | \( 1 + p T^{2} \) |
| 37 | \( 1 - 2 T + p T^{2} \) |
| 41 | \( 1 - 6 T + p T^{2} \) |
| 43 | \( 1 - 12 T + p T^{2} \) |
| 47 | \( 1 - 4 T + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 + 8 T + p T^{2} \) |
| 61 | \( 1 + 2 T + p T^{2} \) |
| 67 | \( 1 + 4 T + p T^{2} \) |
| 71 | \( 1 + 12 T + p T^{2} \) |
| 73 | \( 1 - 14 T + p T^{2} \) |
| 79 | \( 1 + p T^{2} \) |
| 83 | \( 1 + 8 T + p T^{2} \) |
| 89 | \( 1 + 18 T + p T^{2} \) |
| 97 | \( 1 - 6 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.49693177872779789784486905679, −6.68409248688197601412005872787, −6.17503982859644472988172840429, −5.49303708336055505043822847267, −4.51719037163480573571970775934, −4.25044470511069761930186628912, −3.02627032966342906551787400540, −2.24740947847517306299234766605, −1.15860326775403947432083616378, 0,
1.15860326775403947432083616378, 2.24740947847517306299234766605, 3.02627032966342906551787400540, 4.25044470511069761930186628912, 4.51719037163480573571970775934, 5.49303708336055505043822847267, 6.17503982859644472988172840429, 6.68409248688197601412005872787, 7.49693177872779789784486905679