L(s) = 1 | + (1.32 − 0.482i)2-s + (1.83 − 1.83i)3-s + (1.53 − 1.28i)4-s + (−2.13 − 2.13i)5-s + (1.55 − 3.33i)6-s + (1.42 − 2.44i)8-s − 3.75i·9-s + (−3.86 − 1.80i)10-s + (2.28 + 2.28i)11-s + (0.462 − 5.17i)12-s + (−2.52 + 2.52i)13-s − 7.83·15-s + (0.708 − 3.93i)16-s + 0.402·17-s + (−1.81 − 4.99i)18-s + (1.01 − 1.01i)19-s + ⋯ |
L(s) = 1 | + (0.939 − 0.341i)2-s + (1.06 − 1.06i)3-s + (0.767 − 0.641i)4-s + (−0.953 − 0.953i)5-s + (0.635 − 1.35i)6-s + (0.502 − 0.864i)8-s − 1.25i·9-s + (−1.22 − 0.570i)10-s + (0.690 + 0.690i)11-s + (0.133 − 1.49i)12-s + (−0.699 + 0.699i)13-s − 2.02·15-s + (0.177 − 0.984i)16-s + 0.0975·17-s + (−0.427 − 1.17i)18-s + (0.233 − 0.233i)19-s + ⋯ |
Λ(s)=(=(784s/2ΓC(s)L(s)(−0.540+0.841i)Λ(2−s)
Λ(s)=(=(784s/2ΓC(s+1/2)L(s)(−0.540+0.841i)Λ(1−s)
Degree: |
2 |
Conductor: |
784
= 24⋅72
|
Sign: |
−0.540+0.841i
|
Analytic conductor: |
6.26027 |
Root analytic conductor: |
2.50205 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ784(197,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 784, ( :1/2), −0.540+0.841i)
|
Particular Values
L(1) |
≈ |
1.59096−2.91217i |
L(21) |
≈ |
1.59096−2.91217i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.32+0.482i)T |
| 7 | 1 |
good | 3 | 1+(−1.83+1.83i)T−3iT2 |
| 5 | 1+(2.13+2.13i)T+5iT2 |
| 11 | 1+(−2.28−2.28i)T+11iT2 |
| 13 | 1+(2.52−2.52i)T−13iT2 |
| 17 | 1−0.402T+17T2 |
| 19 | 1+(−1.01+1.01i)T−19iT2 |
| 23 | 1−9.11iT−23T2 |
| 29 | 1+(−1.47+1.47i)T−29iT2 |
| 31 | 1−4.25T+31T2 |
| 37 | 1+(1.42+1.42i)T+37iT2 |
| 41 | 1+8.96iT−41T2 |
| 43 | 1+(0.997+0.997i)T+43iT2 |
| 47 | 1+4.19T+47T2 |
| 53 | 1+(−1.33−1.33i)T+53iT2 |
| 59 | 1+(−1.73−1.73i)T+59iT2 |
| 61 | 1+(−1.87+1.87i)T−61iT2 |
| 67 | 1+(−8.52+8.52i)T−67iT2 |
| 71 | 1−0.451iT−71T2 |
| 73 | 1−10.8iT−73T2 |
| 79 | 1+12.6T+79T2 |
| 83 | 1+(0.742−0.742i)T−83iT2 |
| 89 | 1−12.8iT−89T2 |
| 97 | 1+13.3T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.812002881535862721476051008974, −9.126134625687456060174018044411, −8.107014618180614624813859832476, −7.31811810680231637388258851935, −6.79090688996764983473111111596, −5.32139645113922608019443791373, −4.32107322725514960766560724478, −3.51456511712761894587876356498, −2.22445075207103795057863416559, −1.23306448981155822643854612686,
2.74716087880358944818843019461, 3.20169320748789079154055151625, 4.08834883906250503780467405923, 4.84086201562813928620793684404, 6.24448649349367700220000077318, 7.10338029116576209741209561714, 8.131833491578275057175882939694, 8.525149932022557596885005094717, 9.904137695547862169013681848665, 10.59206841652017572890590462278