Properties

Label 2-7920-1.1-c1-0-75
Degree $2$
Conductor $7920$
Sign $-1$
Analytic cond. $63.2415$
Root an. cond. $7.95245$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 2·7-s − 11-s − 4·13-s + 4·19-s + 4·23-s + 25-s − 6·29-s + 8·31-s − 2·35-s − 10·37-s + 6·41-s − 6·43-s + 12·47-s − 3·49-s + 10·53-s − 55-s + 4·59-s − 14·61-s − 4·65-s + 8·67-s − 8·71-s − 4·73-s + 2·77-s − 14·83-s + 18·89-s + 8·91-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.755·7-s − 0.301·11-s − 1.10·13-s + 0.917·19-s + 0.834·23-s + 1/5·25-s − 1.11·29-s + 1.43·31-s − 0.338·35-s − 1.64·37-s + 0.937·41-s − 0.914·43-s + 1.75·47-s − 3/7·49-s + 1.37·53-s − 0.134·55-s + 0.520·59-s − 1.79·61-s − 0.496·65-s + 0.977·67-s − 0.949·71-s − 0.468·73-s + 0.227·77-s − 1.53·83-s + 1.90·89-s + 0.838·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7920\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 11\)
Sign: $-1$
Analytic conductor: \(63.2415\)
Root analytic conductor: \(7.95245\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7920,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + 6 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + 14 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 + 4 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 14 T + p T^{2} \)
89 \( 1 - 18 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.26553199185379668057175357479, −6.99889957121846817641079851245, −6.05793234094430033116909948842, −5.40006200920121405736145086456, −4.83005187631745001202755198932, −3.83956506729129337456646656981, −2.96446253460953418420161520767, −2.41786640438621265719329071115, −1.23698159378796321812755169808, 0, 1.23698159378796321812755169808, 2.41786640438621265719329071115, 2.96446253460953418420161520767, 3.83956506729129337456646656981, 4.83005187631745001202755198932, 5.40006200920121405736145086456, 6.05793234094430033116909948842, 6.99889957121846817641079851245, 7.26553199185379668057175357479

Graph of the $Z$-function along the critical line