L(s) = 1 | + 5-s − 2·7-s + 11-s + 2·13-s − 2·19-s + 25-s − 8·31-s − 2·35-s + 2·37-s − 2·43-s − 3·49-s − 6·53-s + 55-s − 12·59-s + 2·61-s + 2·65-s + 4·67-s + 2·73-s − 2·77-s + 10·79-s − 12·83-s + 6·89-s − 4·91-s − 2·95-s + 14·97-s + 4·103-s − 12·107-s + ⋯ |
L(s) = 1 | + 0.447·5-s − 0.755·7-s + 0.301·11-s + 0.554·13-s − 0.458·19-s + 1/5·25-s − 1.43·31-s − 0.338·35-s + 0.328·37-s − 0.304·43-s − 3/7·49-s − 0.824·53-s + 0.134·55-s − 1.56·59-s + 0.256·61-s + 0.248·65-s + 0.488·67-s + 0.234·73-s − 0.227·77-s + 1.12·79-s − 1.31·83-s + 0.635·89-s − 0.419·91-s − 0.205·95-s + 1.42·97-s + 0.394·103-s − 1.16·107-s + ⋯ |
Λ(s)=(=(7920s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(7920s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−T |
| 11 | 1−T |
good | 7 | 1+2T+pT2 |
| 13 | 1−2T+pT2 |
| 17 | 1+pT2 |
| 19 | 1+2T+pT2 |
| 23 | 1+pT2 |
| 29 | 1+pT2 |
| 31 | 1+8T+pT2 |
| 37 | 1−2T+pT2 |
| 41 | 1+pT2 |
| 43 | 1+2T+pT2 |
| 47 | 1+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1+12T+pT2 |
| 61 | 1−2T+pT2 |
| 67 | 1−4T+pT2 |
| 71 | 1+pT2 |
| 73 | 1−2T+pT2 |
| 79 | 1−10T+pT2 |
| 83 | 1+12T+pT2 |
| 89 | 1−6T+pT2 |
| 97 | 1−14T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.45950523429408724078642817430, −6.62809575887132393562329754634, −6.23014779417671950131080268515, −5.51350916544264899972205145523, −4.68675354902407805865003313060, −3.78604634402167547094494153595, −3.19237694755342407493957762628, −2.20902138146244912815630447797, −1.32116731583023775044904348023, 0,
1.32116731583023775044904348023, 2.20902138146244912815630447797, 3.19237694755342407493957762628, 3.78604634402167547094494153595, 4.68675354902407805865003313060, 5.51350916544264899972205145523, 6.23014779417671950131080268515, 6.62809575887132393562329754634, 7.45950523429408724078642817430