Properties

Label 2-7920-1.1-c1-0-77
Degree $2$
Conductor $7920$
Sign $-1$
Analytic cond. $63.2415$
Root an. cond. $7.95245$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 2·7-s + 11-s + 2·13-s − 2·19-s + 25-s − 8·31-s − 2·35-s + 2·37-s − 2·43-s − 3·49-s − 6·53-s + 55-s − 12·59-s + 2·61-s + 2·65-s + 4·67-s + 2·73-s − 2·77-s + 10·79-s − 12·83-s + 6·89-s − 4·91-s − 2·95-s + 14·97-s + 4·103-s − 12·107-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.755·7-s + 0.301·11-s + 0.554·13-s − 0.458·19-s + 1/5·25-s − 1.43·31-s − 0.338·35-s + 0.328·37-s − 0.304·43-s − 3/7·49-s − 0.824·53-s + 0.134·55-s − 1.56·59-s + 0.256·61-s + 0.248·65-s + 0.488·67-s + 0.234·73-s − 0.227·77-s + 1.12·79-s − 1.31·83-s + 0.635·89-s − 0.419·91-s − 0.205·95-s + 1.42·97-s + 0.394·103-s − 1.16·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7920\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 11\)
Sign: $-1$
Analytic conductor: \(63.2415\)
Root analytic conductor: \(7.95245\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7920,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + 2 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.45950523429408724078642817430, −6.62809575887132393562329754634, −6.23014779417671950131080268515, −5.51350916544264899972205145523, −4.68675354902407805865003313060, −3.78604634402167547094494153595, −3.19237694755342407493957762628, −2.20902138146244912815630447797, −1.32116731583023775044904348023, 0, 1.32116731583023775044904348023, 2.20902138146244912815630447797, 3.19237694755342407493957762628, 3.78604634402167547094494153595, 4.68675354902407805865003313060, 5.51350916544264899972205145523, 6.23014779417671950131080268515, 6.62809575887132393562329754634, 7.45950523429408724078642817430

Graph of the $Z$-function along the critical line