Properties

Label 2-7938-1.1-c1-0-95
Degree $2$
Conductor $7938$
Sign $1$
Analytic cond. $63.3852$
Root an. cond. $7.96148$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 1.76·5-s + 8-s + 1.76·10-s + 6.12·11-s + 0.760·13-s + 16-s + 6.84·17-s − 1.94·19-s + 1.76·20-s + 6.12·22-s − 0.421·23-s − 1.89·25-s + 0.760·26-s − 1.46·29-s + 7.70·31-s + 32-s + 6.84·34-s − 2.88·37-s − 1.94·38-s + 1.76·40-s + 6.94·41-s − 8.66·43-s + 6.12·44-s − 0.421·46-s + 1.66·47-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s + 0.787·5-s + 0.353·8-s + 0.556·10-s + 1.84·11-s + 0.211·13-s + 0.250·16-s + 1.65·17-s − 0.445·19-s + 0.393·20-s + 1.30·22-s − 0.0877·23-s − 0.379·25-s + 0.149·26-s − 0.271·29-s + 1.38·31-s + 0.176·32-s + 1.17·34-s − 0.474·37-s − 0.315·38-s + 0.278·40-s + 1.08·41-s − 1.32·43-s + 0.923·44-s − 0.0620·46-s + 0.242·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7938 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7938 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7938\)    =    \(2 \cdot 3^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(63.3852\)
Root analytic conductor: \(7.96148\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7938,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.944039029\)
\(L(\frac12)\) \(\approx\) \(4.944039029\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - 1.76T + 5T^{2} \)
11 \( 1 - 6.12T + 11T^{2} \)
13 \( 1 - 0.760T + 13T^{2} \)
17 \( 1 - 6.84T + 17T^{2} \)
19 \( 1 + 1.94T + 19T^{2} \)
23 \( 1 + 0.421T + 23T^{2} \)
29 \( 1 + 1.46T + 29T^{2} \)
31 \( 1 - 7.70T + 31T^{2} \)
37 \( 1 + 2.88T + 37T^{2} \)
41 \( 1 - 6.94T + 41T^{2} \)
43 \( 1 + 8.66T + 43T^{2} \)
47 \( 1 - 1.66T + 47T^{2} \)
53 \( 1 - 0.225T + 53T^{2} \)
59 \( 1 - 1.98T + 59T^{2} \)
61 \( 1 + 10.3T + 61T^{2} \)
67 \( 1 - 6.78T + 67T^{2} \)
71 \( 1 - 10.7T + 71T^{2} \)
73 \( 1 + 0.306T + 73T^{2} \)
79 \( 1 + 13.4T + 79T^{2} \)
83 \( 1 - 3.12T + 83T^{2} \)
89 \( 1 + 2.60T + 89T^{2} \)
97 \( 1 - 3.63T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.77551959097459725484040511980, −6.86583229272002718500581567386, −6.33973043515108301056904068761, −5.82595567193704796624620922789, −5.11911490688705541065170348480, −4.17823050235400412435662472541, −3.65264642136979553333953062348, −2.79055364976688948434794313895, −1.73684441441446196309732902466, −1.11108933339772519787956192050, 1.11108933339772519787956192050, 1.73684441441446196309732902466, 2.79055364976688948434794313895, 3.65264642136979553333953062348, 4.17823050235400412435662472541, 5.11911490688705541065170348480, 5.82595567193704796624620922789, 6.33973043515108301056904068761, 6.86583229272002718500581567386, 7.77551959097459725484040511980

Graph of the $Z$-function along the critical line