L(s) = 1 | + 2-s − 3.11·3-s + 4-s + 2.93·5-s − 3.11·6-s + 4.25·7-s + 8-s + 6.67·9-s + 2.93·10-s − 11-s − 3.11·12-s + 4.02·13-s + 4.25·14-s − 9.11·15-s + 16-s − 3.10·17-s + 6.67·18-s + 2.93·20-s − 13.2·21-s − 22-s + 8.63·23-s − 3.11·24-s + 3.59·25-s + 4.02·26-s − 11.4·27-s + 4.25·28-s + 1.90·29-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1.79·3-s + 0.5·4-s + 1.31·5-s − 1.27·6-s + 1.60·7-s + 0.353·8-s + 2.22·9-s + 0.926·10-s − 0.301·11-s − 0.898·12-s + 1.11·13-s + 1.13·14-s − 2.35·15-s + 0.250·16-s − 0.753·17-s + 1.57·18-s + 0.655·20-s − 2.89·21-s − 0.213·22-s + 1.79·23-s − 0.635·24-s + 0.718·25-s + 0.789·26-s − 2.20·27-s + 0.804·28-s + 0.354·29-s + ⋯ |
Λ(s)=(=(7942s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(7942s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.345089456 |
L(21) |
≈ |
3.345089456 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 11 | 1+T |
| 19 | 1 |
good | 3 | 1+3.11T+3T2 |
| 5 | 1−2.93T+5T2 |
| 7 | 1−4.25T+7T2 |
| 13 | 1−4.02T+13T2 |
| 17 | 1+3.10T+17T2 |
| 23 | 1−8.63T+23T2 |
| 29 | 1−1.90T+29T2 |
| 31 | 1+1.66T+31T2 |
| 37 | 1+6.62T+37T2 |
| 41 | 1−4.69T+41T2 |
| 43 | 1−3.02T+43T2 |
| 47 | 1−5.87T+47T2 |
| 53 | 1−0.147T+53T2 |
| 59 | 1−4.30T+59T2 |
| 61 | 1+7.53T+61T2 |
| 67 | 1−2.17T+67T2 |
| 71 | 1−13.7T+71T2 |
| 73 | 1+10.8T+73T2 |
| 79 | 1+0.921T+79T2 |
| 83 | 1−0.684T+83T2 |
| 89 | 1+13.4T+89T2 |
| 97 | 1−16.7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.45404867859389590065929304129, −6.88592967640019859540239210658, −6.12924539477425536558930468915, −5.72388173496940269041875899274, −5.01692057585122419999060079488, −4.80782657666912414391825377325, −3.87159687893510848468167550197, −2.45516351770649981697556762127, −1.58150768126396126877069543429, −1.01273170111468682354955230828,
1.01273170111468682354955230828, 1.58150768126396126877069543429, 2.45516351770649981697556762127, 3.87159687893510848468167550197, 4.80782657666912414391825377325, 5.01692057585122419999060079488, 5.72388173496940269041875899274, 6.12924539477425536558930468915, 6.88592967640019859540239210658, 7.45404867859389590065929304129