Properties

Label 2-7942-1.1-c1-0-34
Degree $2$
Conductor $7942$
Sign $1$
Analytic cond. $63.4171$
Root an. cond. $7.96349$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 1.35·3-s + 4-s + 2.80·5-s − 1.35·6-s − 4.57·7-s + 8-s − 1.15·9-s + 2.80·10-s − 11-s − 1.35·12-s − 6.22·13-s − 4.57·14-s − 3.80·15-s + 16-s − 3.01·17-s − 1.15·18-s + 2.80·20-s + 6.20·21-s − 22-s + 7.65·23-s − 1.35·24-s + 2.84·25-s − 6.22·26-s + 5.64·27-s − 4.57·28-s + 5.20·29-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.783·3-s + 0.5·4-s + 1.25·5-s − 0.554·6-s − 1.72·7-s + 0.353·8-s − 0.385·9-s + 0.885·10-s − 0.301·11-s − 0.391·12-s − 1.72·13-s − 1.22·14-s − 0.981·15-s + 0.250·16-s − 0.731·17-s − 0.272·18-s + 0.626·20-s + 1.35·21-s − 0.213·22-s + 1.59·23-s − 0.277·24-s + 0.569·25-s − 1.22·26-s + 1.08·27-s − 0.864·28-s + 0.967·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7942 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7942 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7942\)    =    \(2 \cdot 11 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(63.4171\)
Root analytic conductor: \(7.96349\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7942,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.501449647\)
\(L(\frac12)\) \(\approx\) \(1.501449647\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
11 \( 1 + T \)
19 \( 1 \)
good3 \( 1 + 1.35T + 3T^{2} \)
5 \( 1 - 2.80T + 5T^{2} \)
7 \( 1 + 4.57T + 7T^{2} \)
13 \( 1 + 6.22T + 13T^{2} \)
17 \( 1 + 3.01T + 17T^{2} \)
23 \( 1 - 7.65T + 23T^{2} \)
29 \( 1 - 5.20T + 29T^{2} \)
31 \( 1 + 3.41T + 31T^{2} \)
37 \( 1 + 5.26T + 37T^{2} \)
41 \( 1 + 0.287T + 41T^{2} \)
43 \( 1 + 8.80T + 43T^{2} \)
47 \( 1 - 10.4T + 47T^{2} \)
53 \( 1 - 3.46T + 53T^{2} \)
59 \( 1 + 11.9T + 59T^{2} \)
61 \( 1 + 6.27T + 61T^{2} \)
67 \( 1 + 3.24T + 67T^{2} \)
71 \( 1 - 10.4T + 71T^{2} \)
73 \( 1 - 12.7T + 73T^{2} \)
79 \( 1 - 0.452T + 79T^{2} \)
83 \( 1 - 6.14T + 83T^{2} \)
89 \( 1 + 9.94T + 89T^{2} \)
97 \( 1 - 11.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.40443746781336380380819699924, −6.75681022404191875447377000563, −6.45098716721521792171709736010, −5.69424113233929225947488179074, −5.18323838747477789244855268949, −4.61999005723385196003913518259, −3.29336868240501289126136924529, −2.77326693599957691430189575212, −2.08253689663721159093604068489, −0.52694174490265709018471195572, 0.52694174490265709018471195572, 2.08253689663721159093604068489, 2.77326693599957691430189575212, 3.29336868240501289126136924529, 4.61999005723385196003913518259, 5.18323838747477789244855268949, 5.69424113233929225947488179074, 6.45098716721521792171709736010, 6.75681022404191875447377000563, 7.40443746781336380380819699924

Graph of the $Z$-function along the critical line