L(s) = 1 | + 2-s − 1.35·3-s + 4-s + 2.80·5-s − 1.35·6-s − 4.57·7-s + 8-s − 1.15·9-s + 2.80·10-s − 11-s − 1.35·12-s − 6.22·13-s − 4.57·14-s − 3.80·15-s + 16-s − 3.01·17-s − 1.15·18-s + 2.80·20-s + 6.20·21-s − 22-s + 7.65·23-s − 1.35·24-s + 2.84·25-s − 6.22·26-s + 5.64·27-s − 4.57·28-s + 5.20·29-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.783·3-s + 0.5·4-s + 1.25·5-s − 0.554·6-s − 1.72·7-s + 0.353·8-s − 0.385·9-s + 0.885·10-s − 0.301·11-s − 0.391·12-s − 1.72·13-s − 1.22·14-s − 0.981·15-s + 0.250·16-s − 0.731·17-s − 0.272·18-s + 0.626·20-s + 1.35·21-s − 0.213·22-s + 1.59·23-s − 0.277·24-s + 0.569·25-s − 1.22·26-s + 1.08·27-s − 0.864·28-s + 0.967·29-s + ⋯ |
Λ(s)=(=(7942s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(7942s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.501449647 |
L(21) |
≈ |
1.501449647 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 11 | 1+T |
| 19 | 1 |
good | 3 | 1+1.35T+3T2 |
| 5 | 1−2.80T+5T2 |
| 7 | 1+4.57T+7T2 |
| 13 | 1+6.22T+13T2 |
| 17 | 1+3.01T+17T2 |
| 23 | 1−7.65T+23T2 |
| 29 | 1−5.20T+29T2 |
| 31 | 1+3.41T+31T2 |
| 37 | 1+5.26T+37T2 |
| 41 | 1+0.287T+41T2 |
| 43 | 1+8.80T+43T2 |
| 47 | 1−10.4T+47T2 |
| 53 | 1−3.46T+53T2 |
| 59 | 1+11.9T+59T2 |
| 61 | 1+6.27T+61T2 |
| 67 | 1+3.24T+67T2 |
| 71 | 1−10.4T+71T2 |
| 73 | 1−12.7T+73T2 |
| 79 | 1−0.452T+79T2 |
| 83 | 1−6.14T+83T2 |
| 89 | 1+9.94T+89T2 |
| 97 | 1−11.9T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.40443746781336380380819699924, −6.75681022404191875447377000563, −6.45098716721521792171709736010, −5.69424113233929225947488179074, −5.18323838747477789244855268949, −4.61999005723385196003913518259, −3.29336868240501289126136924529, −2.77326693599957691430189575212, −2.08253689663721159093604068489, −0.52694174490265709018471195572,
0.52694174490265709018471195572, 2.08253689663721159093604068489, 2.77326693599957691430189575212, 3.29336868240501289126136924529, 4.61999005723385196003913518259, 5.18323838747477789244855268949, 5.69424113233929225947488179074, 6.45098716721521792171709736010, 6.75681022404191875447377000563, 7.40443746781336380380819699924