Properties

Label 2-7942-1.1-c1-0-50
Degree $2$
Conductor $7942$
Sign $1$
Analytic cond. $63.4171$
Root an. cond. $7.96349$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 0.337·3-s + 4-s − 2.62·5-s + 0.337·6-s − 0.195·7-s + 8-s − 2.88·9-s − 2.62·10-s − 11-s + 0.337·12-s + 2.97·13-s − 0.195·14-s − 0.886·15-s + 16-s + 0.422·17-s − 2.88·18-s − 2.62·20-s − 0.0659·21-s − 22-s − 1.65·23-s + 0.337·24-s + 1.90·25-s + 2.97·26-s − 1.98·27-s − 0.195·28-s − 2.77·29-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.194·3-s + 0.5·4-s − 1.17·5-s + 0.137·6-s − 0.0739·7-s + 0.353·8-s − 0.962·9-s − 0.831·10-s − 0.301·11-s + 0.0974·12-s + 0.823·13-s − 0.0522·14-s − 0.228·15-s + 0.250·16-s + 0.102·17-s − 0.680·18-s − 0.587·20-s − 0.0143·21-s − 0.213·22-s − 0.344·23-s + 0.0688·24-s + 0.381·25-s + 0.582·26-s − 0.382·27-s − 0.0369·28-s − 0.515·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7942 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7942 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7942\)    =    \(2 \cdot 11 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(63.4171\)
Root analytic conductor: \(7.96349\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7942,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.072867635\)
\(L(\frac12)\) \(\approx\) \(2.072867635\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
11 \( 1 + T \)
19 \( 1 \)
good3 \( 1 - 0.337T + 3T^{2} \)
5 \( 1 + 2.62T + 5T^{2} \)
7 \( 1 + 0.195T + 7T^{2} \)
13 \( 1 - 2.97T + 13T^{2} \)
17 \( 1 - 0.422T + 17T^{2} \)
23 \( 1 + 1.65T + 23T^{2} \)
29 \( 1 + 2.77T + 29T^{2} \)
31 \( 1 + 7.95T + 31T^{2} \)
37 \( 1 - 9.69T + 37T^{2} \)
41 \( 1 - 6.33T + 41T^{2} \)
43 \( 1 + 0.285T + 43T^{2} \)
47 \( 1 - 1.99T + 47T^{2} \)
53 \( 1 - 3.41T + 53T^{2} \)
59 \( 1 - 14.2T + 59T^{2} \)
61 \( 1 + 8.39T + 61T^{2} \)
67 \( 1 - 6.72T + 67T^{2} \)
71 \( 1 - 1.72T + 71T^{2} \)
73 \( 1 + 13.5T + 73T^{2} \)
79 \( 1 - 7.36T + 79T^{2} \)
83 \( 1 - 7.03T + 83T^{2} \)
89 \( 1 - 9.88T + 89T^{2} \)
97 \( 1 - 10.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.75615832692780123141436001480, −7.30170968072111324991315176285, −6.26079994231531393397580269645, −5.78583216582486899183176645164, −5.00498540259305226646251136468, −4.06848057017784374830794137222, −3.65193470312330684018686686090, −2.92195980755777667540263923359, −2.02034026097643827379544910314, −0.61172772485709602035310399327, 0.61172772485709602035310399327, 2.02034026097643827379544910314, 2.92195980755777667540263923359, 3.65193470312330684018686686090, 4.06848057017784374830794137222, 5.00498540259305226646251136468, 5.78583216582486899183176645164, 6.26079994231531393397580269645, 7.30170968072111324991315176285, 7.75615832692780123141436001480

Graph of the $Z$-function along the critical line