L(s) = 1 | + (118. − 48.3i)2-s − 1.15e3·3-s + (1.17e4 − 1.14e4i)4-s + 9.66e3i·5-s + (−1.36e5 + 5.57e4i)6-s − 1.34e6i·7-s + (8.34e5 − 1.92e6i)8-s − 3.45e6·9-s + (4.67e5 + 1.14e6i)10-s − 8.97e5·11-s + (−1.35e7 + 1.32e7i)12-s − 5.37e7i·13-s + (−6.50e7 − 1.59e8i)14-s − 1.11e7i·15-s + (5.91e6 − 2.68e8i)16-s − 1.06e8·17-s + ⋯ |
L(s) = 1 | + (0.925 − 0.377i)2-s − 0.527·3-s + (0.714 − 0.699i)4-s + 0.123i·5-s + (−0.488 + 0.199i)6-s − 1.63i·7-s + (0.397 − 0.917i)8-s − 0.722·9-s + (0.0467 + 0.114i)10-s − 0.0460·11-s + (−0.376 + 0.368i)12-s − 0.857i·13-s + (−0.617 − 1.51i)14-s − 0.0652i·15-s + (0.0220 − 0.999i)16-s − 0.259·17-s + ⋯ |
Λ(s)=(=(8s/2ΓC(s)L(s)(−0.397+0.917i)Λ(15−s)
Λ(s)=(=(8s/2ΓC(s+7)L(s)(−0.397+0.917i)Λ(1−s)
Degree: |
2 |
Conductor: |
8
= 23
|
Sign: |
−0.397+0.917i
|
Analytic conductor: |
9.94631 |
Root analytic conductor: |
3.15377 |
Motivic weight: |
14 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ8(3,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 8, ( :7), −0.397+0.917i)
|
Particular Values
L(215) |
≈ |
1.20008−1.82856i |
L(21) |
≈ |
1.20008−1.82856i |
L(8) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−118.+48.3i)T |
good | 3 | 1+1.15e3T+4.78e6T2 |
| 5 | 1−9.66e3iT−6.10e9T2 |
| 7 | 1+1.34e6iT−6.78e11T2 |
| 11 | 1+8.97e5T+3.79e14T2 |
| 13 | 1+5.37e7iT−3.93e15T2 |
| 17 | 1+1.06e8T+1.68e17T2 |
| 19 | 1−9.74e8T+7.99e17T2 |
| 23 | 1−4.91e9iT−1.15e19T2 |
| 29 | 1−1.32e10iT−2.97e20T2 |
| 31 | 1−3.03e8iT−7.56e20T2 |
| 37 | 1+7.87e10iT−9.01e21T2 |
| 41 | 1+2.80e11T+3.79e22T2 |
| 43 | 1−3.24e11T+7.38e22T2 |
| 47 | 1+2.85e10iT−2.56e23T2 |
| 53 | 1+2.31e12iT−1.37e24T2 |
| 59 | 1−3.41e12T+6.19e24T2 |
| 61 | 1−5.23e12iT−9.87e24T2 |
| 67 | 1−7.72e12T+3.67e25T2 |
| 71 | 1−5.57e12iT−8.27e25T2 |
| 73 | 1+4.34e12T+1.22e26T2 |
| 79 | 1+2.63e13iT−3.68e26T2 |
| 83 | 1+3.06e13T+7.36e26T2 |
| 89 | 1−3.63e13T+1.95e27T2 |
| 97 | 1−7.63e13T+6.52e27T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−17.61004198531031113544821687864, −16.20005071241594507104192406045, −14.38739240479442914335663716542, −13.20485072906447241996961565804, −11.43382959858815767026710715588, −10.33178675497708328185770457691, −7.14809449477386439827619910232, −5.30459525712283686568098075219, −3.42678150360528532137602526213, −0.841414775344892205727968347331,
2.60343461002363547212616341344, 5.05241322465936846080236336931, 6.32500906862010424548057312458, 8.658661823672135355255472661365, 11.46636737583749215302669191003, 12.38854563739458707126510968958, 14.25894371617250801501947442881, 15.62360604749843609362959518916, 16.88232333497473952022432229268, 18.53079542247788088298427525239