L(s) = 1 | + (118. − 48.3i)2-s − 1.15e3·3-s + (1.17e4 − 1.14e4i)4-s + 9.66e3i·5-s + (−1.36e5 + 5.57e4i)6-s − 1.34e6i·7-s + (8.34e5 − 1.92e6i)8-s − 3.45e6·9-s + (4.67e5 + 1.14e6i)10-s − 8.97e5·11-s + (−1.35e7 + 1.32e7i)12-s − 5.37e7i·13-s + (−6.50e7 − 1.59e8i)14-s − 1.11e7i·15-s + (5.91e6 − 2.68e8i)16-s − 1.06e8·17-s + ⋯ |
L(s) = 1 | + (0.925 − 0.377i)2-s − 0.527·3-s + (0.714 − 0.699i)4-s + 0.123i·5-s + (−0.488 + 0.199i)6-s − 1.63i·7-s + (0.397 − 0.917i)8-s − 0.722·9-s + (0.0467 + 0.114i)10-s − 0.0460·11-s + (−0.376 + 0.368i)12-s − 0.857i·13-s + (−0.617 − 1.51i)14-s − 0.0652i·15-s + (0.0220 − 0.999i)16-s − 0.259·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.397 + 0.917i)\, \overline{\Lambda}(15-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8 ^{s/2} \, \Gamma_{\C}(s+7) \, L(s)\cr =\mathstrut & (-0.397 + 0.917i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{15}{2})\) |
\(\approx\) |
\(1.20008 - 1.82856i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.20008 - 1.82856i\) |
\(L(8)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-118. + 48.3i)T \) |
good | 3 | \( 1 + 1.15e3T + 4.78e6T^{2} \) |
| 5 | \( 1 - 9.66e3iT - 6.10e9T^{2} \) |
| 7 | \( 1 + 1.34e6iT - 6.78e11T^{2} \) |
| 11 | \( 1 + 8.97e5T + 3.79e14T^{2} \) |
| 13 | \( 1 + 5.37e7iT - 3.93e15T^{2} \) |
| 17 | \( 1 + 1.06e8T + 1.68e17T^{2} \) |
| 19 | \( 1 - 9.74e8T + 7.99e17T^{2} \) |
| 23 | \( 1 - 4.91e9iT - 1.15e19T^{2} \) |
| 29 | \( 1 - 1.32e10iT - 2.97e20T^{2} \) |
| 31 | \( 1 - 3.03e8iT - 7.56e20T^{2} \) |
| 37 | \( 1 + 7.87e10iT - 9.01e21T^{2} \) |
| 41 | \( 1 + 2.80e11T + 3.79e22T^{2} \) |
| 43 | \( 1 - 3.24e11T + 7.38e22T^{2} \) |
| 47 | \( 1 + 2.85e10iT - 2.56e23T^{2} \) |
| 53 | \( 1 + 2.31e12iT - 1.37e24T^{2} \) |
| 59 | \( 1 - 3.41e12T + 6.19e24T^{2} \) |
| 61 | \( 1 - 5.23e12iT - 9.87e24T^{2} \) |
| 67 | \( 1 - 7.72e12T + 3.67e25T^{2} \) |
| 71 | \( 1 - 5.57e12iT - 8.27e25T^{2} \) |
| 73 | \( 1 + 4.34e12T + 1.22e26T^{2} \) |
| 79 | \( 1 + 2.63e13iT - 3.68e26T^{2} \) |
| 83 | \( 1 + 3.06e13T + 7.36e26T^{2} \) |
| 89 | \( 1 - 3.63e13T + 1.95e27T^{2} \) |
| 97 | \( 1 - 7.63e13T + 6.52e27T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.61004198531031113544821687864, −16.20005071241594507104192406045, −14.38739240479442914335663716542, −13.20485072906447241996961565804, −11.43382959858815767026710715588, −10.33178675497708328185770457691, −7.14809449477386439827619910232, −5.30459525712283686568098075219, −3.42678150360528532137602526213, −0.841414775344892205727968347331,
2.60343461002363547212616341344, 5.05241322465936846080236336931, 6.32500906862010424548057312458, 8.658661823672135355255472661365, 11.46636737583749215302669191003, 12.38854563739458707126510968958, 14.25894371617250801501947442881, 15.62360604749843609362959518916, 16.88232333497473952022432229268, 18.53079542247788088298427525239