L(s) = 1 | + (297. − 416. i)2-s − 2.59e4·3-s + (−8.54e4 − 2.47e5i)4-s + 1.90e6i·5-s + (−7.70e6 + 1.08e7i)6-s + 9.33e6i·7-s + (−1.28e8 − 3.80e7i)8-s + 2.84e8·9-s + (7.93e8 + 5.65e8i)10-s + 2.94e9·11-s + (2.21e9 + 6.42e9i)12-s − 7.67e9i·13-s + (3.89e9 + 2.77e9i)14-s − 4.93e10i·15-s + (−5.41e10 + 4.23e10i)16-s − 1.40e10·17-s + ⋯ |
L(s) = 1 | + (0.580 − 0.814i)2-s − 1.31·3-s + (−0.326 − 0.945i)4-s + 0.974i·5-s + (−0.764 + 1.07i)6-s + 0.231i·7-s + (−0.959 − 0.283i)8-s + 0.734·9-s + (0.793 + 0.565i)10-s + 1.24·11-s + (0.429 + 1.24i)12-s − 0.723i·13-s + (0.188 + 0.134i)14-s − 1.28i·15-s + (−0.787 + 0.616i)16-s − 0.118·17-s + ⋯ |
Λ(s)=(=(8s/2ΓC(s)L(s)(0.959+0.283i)Λ(19−s)
Λ(s)=(=(8s/2ΓC(s+9)L(s)(0.959+0.283i)Λ(1−s)
Degree: |
2 |
Conductor: |
8
= 23
|
Sign: |
0.959+0.283i
|
Analytic conductor: |
16.4308 |
Root analytic conductor: |
4.05350 |
Motivic weight: |
18 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ8(3,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 8, ( :9), 0.959+0.283i)
|
Particular Values
L(219) |
≈ |
1.45521−0.210395i |
L(21) |
≈ |
1.45521−0.210395i |
L(10) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−297.+416.i)T |
good | 3 | 1+2.59e4T+3.87e8T2 |
| 5 | 1−1.90e6iT−3.81e12T2 |
| 7 | 1−9.33e6iT−1.62e15T2 |
| 11 | 1−2.94e9T+5.55e18T2 |
| 13 | 1+7.67e9iT−1.12e20T2 |
| 17 | 1+1.40e10T+1.40e22T2 |
| 19 | 1−5.59e11T+1.04e23T2 |
| 23 | 1−2.61e12iT−3.24e24T2 |
| 29 | 1+1.91e13iT−2.10e26T2 |
| 31 | 1−3.57e13iT−6.99e26T2 |
| 37 | 1−2.51e14iT−1.68e28T2 |
| 41 | 1−7.94e13T+1.07e29T2 |
| 43 | 1+3.62e14T+2.52e29T2 |
| 47 | 1+2.20e14iT−1.25e30T2 |
| 53 | 1−1.22e15iT−1.08e31T2 |
| 59 | 1−2.66e15T+7.50e31T2 |
| 61 | 1+2.02e16iT−1.36e32T2 |
| 67 | 1−3.97e16T+7.40e32T2 |
| 71 | 1+1.25e16iT−2.10e33T2 |
| 73 | 1−6.29e15T+3.46e33T2 |
| 79 | 1−6.53e16iT−1.43e34T2 |
| 83 | 1−1.09e17T+3.49e34T2 |
| 89 | 1+3.14e17T+1.22e35T2 |
| 97 | 1+5.54e17T+5.77e35T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−17.44298608354067781236448293447, −15.43748065701116826457016989369, −13.91165048342826418290050171449, −11.99608350902543324609138878767, −11.26796881720380996906952701614, −9.870160987630335420270923633952, −6.57595996302880613573781802077, −5.29345763252019602704798081606, −3.28423586349785818691952250609, −1.08211383900967262149149125038,
0.74656490240077203209065515775, 4.25968940074835591751080093010, 5.50382863404481145020222381099, 6.89269041380690275825763022934, 9.028670039137924168588751575557, 11.57187972950771222353969881416, 12.55794038138931590542901979668, 14.25417141907341205119005754918, 16.35806505623895132148519048638, 16.72091730765816021787088908069