L(s) = 1 | + (564. − 452. i)2-s − 5.04e4i·3-s + (1.14e5 − 5.11e5i)4-s + 7.26e6i·5-s + (−2.28e7 − 2.84e7i)6-s − 1.80e8·7-s + (−1.67e8 − 3.40e8i)8-s − 1.38e9·9-s + (3.28e9 + 4.10e9i)10-s + 1.74e9i·11-s + (−2.58e10 − 5.75e9i)12-s + 9.15e9i·13-s + (−1.02e11 + 8.19e10i)14-s + 3.66e11·15-s + (−2.48e11 − 1.16e11i)16-s − 2.51e11·17-s + ⋯ |
L(s) = 1 | + (0.780 − 0.625i)2-s − 1.47i·3-s + (0.217 − 0.976i)4-s + 1.66i·5-s + (−0.925 − 1.15i)6-s − 1.69·7-s + (−0.440 − 0.897i)8-s − 1.18·9-s + (1.04 + 1.29i)10-s + 0.223i·11-s + (−1.44 − 0.321i)12-s + 0.239i·13-s + (−1.32 + 1.06i)14-s + 2.46·15-s + (−0.905 − 0.424i)16-s − 0.514·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.440 - 0.897i)\, \overline{\Lambda}(20-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8 ^{s/2} \, \Gamma_{\C}(s+19/2) \, L(s)\cr =\mathstrut & (-0.440 - 0.897i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(10)\) |
\(\approx\) |
\(0.315465 + 0.506374i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.315465 + 0.506374i\) |
\(L(\frac{21}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-564. + 452. i)T \) |
good | 3 | \( 1 + 5.04e4iT - 1.16e9T^{2} \) |
| 5 | \( 1 - 7.26e6iT - 1.90e13T^{2} \) |
| 7 | \( 1 + 1.80e8T + 1.13e16T^{2} \) |
| 11 | \( 1 - 1.74e9iT - 6.11e19T^{2} \) |
| 13 | \( 1 - 9.15e9iT - 1.46e21T^{2} \) |
| 17 | \( 1 + 2.51e11T + 2.39e23T^{2} \) |
| 19 | \( 1 + 1.49e12iT - 1.97e24T^{2} \) |
| 23 | \( 1 + 4.50e12T + 7.46e25T^{2} \) |
| 29 | \( 1 - 3.77e12iT - 6.10e27T^{2} \) |
| 31 | \( 1 - 1.61e14T + 2.16e28T^{2} \) |
| 37 | \( 1 - 4.58e13iT - 6.24e29T^{2} \) |
| 41 | \( 1 + 3.30e15T + 4.39e30T^{2} \) |
| 43 | \( 1 + 7.16e14iT - 1.08e31T^{2} \) |
| 47 | \( 1 + 9.61e15T + 5.88e31T^{2} \) |
| 53 | \( 1 + 2.87e16iT - 5.77e32T^{2} \) |
| 59 | \( 1 + 8.42e16iT - 4.42e33T^{2} \) |
| 61 | \( 1 - 3.85e16iT - 8.34e33T^{2} \) |
| 67 | \( 1 - 3.60e16iT - 4.95e34T^{2} \) |
| 71 | \( 1 + 8.39e16T + 1.49e35T^{2} \) |
| 73 | \( 1 - 1.83e14T + 2.53e35T^{2} \) |
| 79 | \( 1 - 1.00e18T + 1.13e36T^{2} \) |
| 83 | \( 1 - 1.33e18iT - 2.90e36T^{2} \) |
| 89 | \( 1 + 4.03e18T + 1.09e37T^{2} \) |
| 97 | \( 1 - 6.57e18T + 5.60e37T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.45169914520973652218844240165, −13.88351288117272109138450472817, −12.99592600757690499777399445122, −11.61026403262032826040247729269, −10.02003464351836960419835104973, −6.82155267291466347723436271281, −6.46630035094955359970668581403, −3.23647478322546103715717056289, −2.24207716039105267176272163400, −0.15850747222322163598465458566,
3.45213717485655731975946873263, 4.59565096295353086229317582821, 5.93340855926478710327025434777, 8.608055511508073105083978559096, 9.837339334926724416030726418872, 12.25201770360627609552907192627, 13.42932994656456753519936081284, 15.47120025804113693228605978061, 16.25319614665928360176651979395, 16.84752622187531768493383007353