L(s) = 1 | + (564. − 452. i)2-s − 5.04e4i·3-s + (1.14e5 − 5.11e5i)4-s + 7.26e6i·5-s + (−2.28e7 − 2.84e7i)6-s − 1.80e8·7-s + (−1.67e8 − 3.40e8i)8-s − 1.38e9·9-s + (3.28e9 + 4.10e9i)10-s + 1.74e9i·11-s + (−2.58e10 − 5.75e9i)12-s + 9.15e9i·13-s + (−1.02e11 + 8.19e10i)14-s + 3.66e11·15-s + (−2.48e11 − 1.16e11i)16-s − 2.51e11·17-s + ⋯ |
L(s) = 1 | + (0.780 − 0.625i)2-s − 1.47i·3-s + (0.217 − 0.976i)4-s + 1.66i·5-s + (−0.925 − 1.15i)6-s − 1.69·7-s + (−0.440 − 0.897i)8-s − 1.18·9-s + (1.04 + 1.29i)10-s + 0.223i·11-s + (−1.44 − 0.321i)12-s + 0.239i·13-s + (−1.32 + 1.06i)14-s + 2.46·15-s + (−0.905 − 0.424i)16-s − 0.514·17-s + ⋯ |
Λ(s)=(=(8s/2ΓC(s)L(s)(−0.440−0.897i)Λ(20−s)
Λ(s)=(=(8s/2ΓC(s+19/2)L(s)(−0.440−0.897i)Λ(1−s)
Degree: |
2 |
Conductor: |
8
= 23
|
Sign: |
−0.440−0.897i
|
Analytic conductor: |
18.3053 |
Root analytic conductor: |
4.27847 |
Motivic weight: |
19 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ8(5,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 8, ( :19/2), −0.440−0.897i)
|
Particular Values
L(10) |
≈ |
0.315465+0.506374i |
L(21) |
≈ |
0.315465+0.506374i |
L(221) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−564.+452.i)T |
good | 3 | 1+5.04e4iT−1.16e9T2 |
| 5 | 1−7.26e6iT−1.90e13T2 |
| 7 | 1+1.80e8T+1.13e16T2 |
| 11 | 1−1.74e9iT−6.11e19T2 |
| 13 | 1−9.15e9iT−1.46e21T2 |
| 17 | 1+2.51e11T+2.39e23T2 |
| 19 | 1+1.49e12iT−1.97e24T2 |
| 23 | 1+4.50e12T+7.46e25T2 |
| 29 | 1−3.77e12iT−6.10e27T2 |
| 31 | 1−1.61e14T+2.16e28T2 |
| 37 | 1−4.58e13iT−6.24e29T2 |
| 41 | 1+3.30e15T+4.39e30T2 |
| 43 | 1+7.16e14iT−1.08e31T2 |
| 47 | 1+9.61e15T+5.88e31T2 |
| 53 | 1+2.87e16iT−5.77e32T2 |
| 59 | 1+8.42e16iT−4.42e33T2 |
| 61 | 1−3.85e16iT−8.34e33T2 |
| 67 | 1−3.60e16iT−4.95e34T2 |
| 71 | 1+8.39e16T+1.49e35T2 |
| 73 | 1−1.83e14T+2.53e35T2 |
| 79 | 1−1.00e18T+1.13e36T2 |
| 83 | 1−1.33e18iT−2.90e36T2 |
| 89 | 1+4.03e18T+1.09e37T2 |
| 97 | 1−6.57e18T+5.60e37T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.45169914520973652218844240165, −13.88351288117272109138450472817, −12.99592600757690499777399445122, −11.61026403262032826040247729269, −10.02003464351836960419835104973, −6.82155267291466347723436271281, −6.46630035094955359970668581403, −3.23647478322546103715717056289, −2.24207716039105267176272163400, −0.15850747222322163598465458566,
3.45213717485655731975946873263, 4.59565096295353086229317582821, 5.93340855926478710327025434777, 8.608055511508073105083978559096, 9.837339334926724416030726418872, 12.25201770360627609552907192627, 13.42932994656456753519936081284, 15.47120025804113693228605978061, 16.25319614665928360176651979395, 16.84752622187531768493383007353