Properties

Label 2-80-1.1-c11-0-4
Degree $2$
Conductor $80$
Sign $1$
Analytic cond. $61.4674$
Root an. cond. $7.84011$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 141.·3-s + 3.12e3·5-s − 8.55e4·7-s − 1.57e5·9-s − 7.67e5·11-s + 2.20e5·13-s + 4.42e5·15-s − 9.30e5·17-s + 1.77e7·19-s − 1.21e7·21-s + 3.99e7·23-s + 9.76e6·25-s − 4.73e7·27-s + 7.68e7·29-s + 2.96e7·31-s − 1.08e8·33-s − 2.67e8·35-s + 5.40e7·37-s + 3.13e7·39-s + 1.26e8·41-s + 2.88e8·43-s − 4.90e8·45-s + 1.57e9·47-s + 5.34e9·49-s − 1.31e8·51-s − 4.09e9·53-s − 2.39e9·55-s + ⋯
L(s)  = 1  + 0.336·3-s + 0.447·5-s − 1.92·7-s − 0.886·9-s − 1.43·11-s + 0.165·13-s + 0.150·15-s − 0.158·17-s + 1.64·19-s − 0.648·21-s + 1.29·23-s + 0.199·25-s − 0.635·27-s + 0.695·29-s + 0.185·31-s − 0.483·33-s − 0.860·35-s + 0.128·37-s + 0.0555·39-s + 0.169·41-s + 0.299·43-s − 0.396·45-s + 0.998·47-s + 2.70·49-s − 0.0535·51-s − 1.34·53-s − 0.642·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(80\)    =    \(2^{4} \cdot 5\)
Sign: $1$
Analytic conductor: \(61.4674\)
Root analytic conductor: \(7.84011\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 80,\ (\ :11/2),\ 1)\)

Particular Values

\(L(6)\) \(\approx\) \(1.401862016\)
\(L(\frac12)\) \(\approx\) \(1.401862016\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - 3.12e3T \)
good3 \( 1 - 141.T + 1.77e5T^{2} \)
7 \( 1 + 8.55e4T + 1.97e9T^{2} \)
11 \( 1 + 7.67e5T + 2.85e11T^{2} \)
13 \( 1 - 2.20e5T + 1.79e12T^{2} \)
17 \( 1 + 9.30e5T + 3.42e13T^{2} \)
19 \( 1 - 1.77e7T + 1.16e14T^{2} \)
23 \( 1 - 3.99e7T + 9.52e14T^{2} \)
29 \( 1 - 7.68e7T + 1.22e16T^{2} \)
31 \( 1 - 2.96e7T + 2.54e16T^{2} \)
37 \( 1 - 5.40e7T + 1.77e17T^{2} \)
41 \( 1 - 1.26e8T + 5.50e17T^{2} \)
43 \( 1 - 2.88e8T + 9.29e17T^{2} \)
47 \( 1 - 1.57e9T + 2.47e18T^{2} \)
53 \( 1 + 4.09e9T + 9.26e18T^{2} \)
59 \( 1 + 3.77e9T + 3.01e19T^{2} \)
61 \( 1 + 9.64e9T + 4.35e19T^{2} \)
67 \( 1 - 1.63e10T + 1.22e20T^{2} \)
71 \( 1 + 1.03e10T + 2.31e20T^{2} \)
73 \( 1 - 4.27e9T + 3.13e20T^{2} \)
79 \( 1 - 1.96e10T + 7.47e20T^{2} \)
83 \( 1 - 1.35e10T + 1.28e21T^{2} \)
89 \( 1 - 2.25e10T + 2.77e21T^{2} \)
97 \( 1 + 1.08e11T + 7.15e21T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.37610238729137597377186479518, −10.85173526004524126222706135784, −9.778468605058932626147433310899, −8.998833867039948831288729870865, −7.55339926950345025399357872459, −6.27890497429824962443715758848, −5.27029237402322867639868407842, −3.19810684702355697095109601902, −2.71689032704121873084413907535, −0.59425195306094299501342264143, 0.59425195306094299501342264143, 2.71689032704121873084413907535, 3.19810684702355697095109601902, 5.27029237402322867639868407842, 6.27890497429824962443715758848, 7.55339926950345025399357872459, 8.998833867039948831288729870865, 9.778468605058932626147433310899, 10.85173526004524126222706135784, 12.37610238729137597377186479518

Graph of the $Z$-function along the critical line