Properties

Label 4-80e2-1.1-c1e2-0-2
Degree $4$
Conductor $6400$
Sign $1$
Analytic cond. $0.408069$
Root an. cond. $0.799251$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·3-s + 2·4-s + 2·5-s − 4·6-s + 2·9-s − 4·10-s − 6·11-s + 4·12-s + 6·13-s + 4·15-s − 4·16-s − 4·18-s − 2·19-s + 4·20-s + 12·22-s − 16·23-s − 25-s − 12·26-s + 6·27-s + 6·29-s − 8·30-s + 8·32-s − 12·33-s + 4·36-s + 6·37-s + 4·38-s + ⋯
L(s)  = 1  − 1.41·2-s + 1.15·3-s + 4-s + 0.894·5-s − 1.63·6-s + 2/3·9-s − 1.26·10-s − 1.80·11-s + 1.15·12-s + 1.66·13-s + 1.03·15-s − 16-s − 0.942·18-s − 0.458·19-s + 0.894·20-s + 2.55·22-s − 3.33·23-s − 1/5·25-s − 2.35·26-s + 1.15·27-s + 1.11·29-s − 1.46·30-s + 1.41·32-s − 2.08·33-s + 2/3·36-s + 0.986·37-s + 0.648·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(6400\)    =    \(2^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(0.408069\)
Root analytic conductor: \(0.799251\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 6400,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6992058157\)
\(L(\frac12)\) \(\approx\) \(0.6992058157\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T + p T^{2} \)
5$C_2$ \( 1 - 2 T + p T^{2} \)
good3$C_2^2$ \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
11$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 90 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 4 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
59$C_2^2$ \( 1 - 18 T + 162 T^{2} - 18 p T^{3} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 10 T + 50 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
67$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
71$C_2^2$ \( 1 - 106 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 18 T + 162 T^{2} - 18 p T^{3} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.40961390949872677282428971982, −14.16526480917337796251134109767, −13.53370766369937713346205913049, −13.35575430209823148734361938811, −12.65503725385643908561619473780, −11.90748346611457144115278497932, −10.88115227422887522374158348317, −10.69096341676788920220445688197, −9.977915016614731615484456961755, −9.731379494354792100923490262160, −9.047040914803898684021525532806, −8.283214005580134722423170567174, −7.955042095620064103982772188440, −7.88841615959089504205364663306, −6.30026986621631158380811466648, −6.25801948258685009188092670275, −4.94519126799145894471468277245, −3.87649783842984427497926954231, −2.63230194781690904930246602242, −1.87808949039494321075128461614, 1.87808949039494321075128461614, 2.63230194781690904930246602242, 3.87649783842984427497926954231, 4.94519126799145894471468277245, 6.25801948258685009188092670275, 6.30026986621631158380811466648, 7.88841615959089504205364663306, 7.955042095620064103982772188440, 8.283214005580134722423170567174, 9.047040914803898684021525532806, 9.731379494354792100923490262160, 9.977915016614731615484456961755, 10.69096341676788920220445688197, 10.88115227422887522374158348317, 11.90748346611457144115278497932, 12.65503725385643908561619473780, 13.35575430209823148734361938811, 13.53370766369937713346205913049, 14.16526480917337796251134109767, 14.40961390949872677282428971982

Graph of the $Z$-function along the critical line