L(s) = 1 | + (−1.29 + 0.558i)2-s − 2.55·3-s + (1.37 − 1.45i)4-s + (1.49 − 1.66i)5-s + (3.31 − 1.42i)6-s + (2.40 − 2.40i)7-s + (−0.977 + 2.65i)8-s + 3.51·9-s + (−1.00 + 2.99i)10-s + (−2.67 − 2.67i)11-s + (−3.51 + 3.70i)12-s − 2.40i·13-s + (−1.78 + 4.46i)14-s + (−3.80 + 4.25i)15-s + (−0.212 − 3.99i)16-s + (−0.0750 + 0.0750i)17-s + ⋯ |
L(s) = 1 | + (−0.918 + 0.394i)2-s − 1.47·3-s + (0.688 − 0.725i)4-s + (0.666 − 0.745i)5-s + (1.35 − 0.581i)6-s + (0.908 − 0.908i)7-s + (−0.345 + 0.938i)8-s + 1.17·9-s + (−0.318 + 0.947i)10-s + (−0.807 − 0.807i)11-s + (−1.01 + 1.06i)12-s − 0.666i·13-s + (−0.475 + 1.19i)14-s + (−0.982 + 1.09i)15-s + (−0.0532 − 0.998i)16-s + (−0.0182 + 0.0182i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.669 + 0.743i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.669 + 0.743i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.431553 - 0.192089i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.431553 - 0.192089i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.29 - 0.558i)T \) |
| 5 | \( 1 + (-1.49 + 1.66i)T \) |
good | 3 | \( 1 + 2.55T + 3T^{2} \) |
| 7 | \( 1 + (-2.40 + 2.40i)T - 7iT^{2} \) |
| 11 | \( 1 + (2.67 + 2.67i)T + 11iT^{2} \) |
| 13 | \( 1 + 2.40iT - 13T^{2} \) |
| 17 | \( 1 + (0.0750 - 0.0750i)T - 17iT^{2} \) |
| 19 | \( 1 + (-2.67 - 2.67i)T + 19iT^{2} \) |
| 23 | \( 1 + (-2.12 - 2.12i)T + 23iT^{2} \) |
| 29 | \( 1 + (3.95 - 3.95i)T - 29iT^{2} \) |
| 31 | \( 1 - 1.65iT - 31T^{2} \) |
| 37 | \( 1 - 2.53iT - 37T^{2} \) |
| 41 | \( 1 + 1.70iT - 41T^{2} \) |
| 43 | \( 1 + 3.84iT - 43T^{2} \) |
| 47 | \( 1 + (-2.15 - 2.15i)T + 47iT^{2} \) |
| 53 | \( 1 + 1.29T + 53T^{2} \) |
| 59 | \( 1 + (-5.29 + 5.29i)T - 59iT^{2} \) |
| 61 | \( 1 + (-10.2 - 10.2i)T + 61iT^{2} \) |
| 67 | \( 1 - 10.6iT - 67T^{2} \) |
| 71 | \( 1 - 2.27T + 71T^{2} \) |
| 73 | \( 1 + (9.99 - 9.99i)T - 73iT^{2} \) |
| 79 | \( 1 + 8.70T + 79T^{2} \) |
| 83 | \( 1 - 11.1T + 83T^{2} \) |
| 89 | \( 1 - 15.6T + 89T^{2} \) |
| 97 | \( 1 + (-5.00 + 5.00i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.32850619626756020316718318530, −13.09345768293270538062097448962, −11.68511204512258079177299261206, −10.78179479794496755215010428506, −10.10283413170751050193601128324, −8.496659254323291188380860269330, −7.30880509264319359442398795737, −5.75322819075005409568247926644, −5.14804413563336529520432990761, −1.04722882240148046104196206783,
2.19929262790141444212630629229, 5.08918913950228620918989300982, 6.36608043072745464515277796734, 7.54467721628387587324169973087, 9.240999362442964191861313462188, 10.35009578032724246509833253673, 11.25469852264598648329756051107, 11.84345523961897809221794657956, 13.04076536335767643645371503195, 14.82880066365717411730205007013