L(s) = 1 | + 5.60i·3-s − 2.23·5-s − 1.32i·7-s − 22.4·9-s + 11.2i·11-s + 17.4·13-s − 12.5i·15-s + 18·17-s + 5.29i·19-s + 7.41·21-s + 15.1i·23-s + 5.00·25-s − 75.1i·27-s + 8.83·29-s − 42.1i·31-s + ⋯ |
L(s) = 1 | + 1.86i·3-s − 0.447·5-s − 0.189i·7-s − 2.49·9-s + 1.01i·11-s + 1.33·13-s − 0.835i·15-s + 1.05·17-s + 0.278i·19-s + 0.353·21-s + 0.659i·23-s + 0.200·25-s − 2.78i·27-s + 0.304·29-s − 1.36i·31-s + ⋯ |
Λ(s)=(=(80s/2ΓC(s)L(s)(−0.500−0.866i)Λ(3−s)
Λ(s)=(=(80s/2ΓC(s+1)L(s)(−0.500−0.866i)Λ(1−s)
Degree: |
2 |
Conductor: |
80
= 24⋅5
|
Sign: |
−0.500−0.866i
|
Analytic conductor: |
2.17984 |
Root analytic conductor: |
1.47642 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ80(31,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 80, ( :1), −0.500−0.866i)
|
Particular Values
L(23) |
≈ |
0.565442+0.979375i |
L(21) |
≈ |
0.565442+0.979375i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+2.23T |
good | 3 | 1−5.60iT−9T2 |
| 7 | 1+1.32iT−49T2 |
| 11 | 1−11.2iT−121T2 |
| 13 | 1−17.4T+169T2 |
| 17 | 1−18T+289T2 |
| 19 | 1−5.29iT−361T2 |
| 23 | 1−15.1iT−529T2 |
| 29 | 1−8.83T+841T2 |
| 31 | 1+42.1iT−961T2 |
| 37 | 1−33.4T+1.36e3T2 |
| 41 | 1+28.2T+1.68e3T2 |
| 43 | 1+25.3iT−1.84e3T2 |
| 47 | 1−10.5iT−2.20e3T2 |
| 53 | 1+28.2T+2.80e3T2 |
| 59 | 1−44.8iT−3.48e3T2 |
| 61 | 1+77.4T+3.72e3T2 |
| 67 | 1+36.5iT−4.48e3T2 |
| 71 | 1+97.6iT−5.04e3T2 |
| 73 | 1−15.6T+5.32e3T2 |
| 79 | 1+112.iT−6.24e3T2 |
| 83 | 1−92.0iT−6.88e3T2 |
| 89 | 1+59.6T+7.92e3T2 |
| 97 | 1−108.T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.89989074908984062418778409037, −13.70757727970655256232665744298, −12.01416148725693276241280105773, −10.98878378402053937591684864785, −10.08604724120706180698544387737, −9.172700467010364855643923581895, −7.889510102332390559813042332016, −5.82781281753287519400421558846, −4.45975206250091000394148278049, −3.47249429946372439329020688835,
1.06904770890671644453700554979, 3.11445754944512377494061572657, 5.76249425566487254658174167997, 6.74053706327825409381364169442, 8.033853818234939696989364129111, 8.680187085025324165906565093447, 10.91787020413572878136658579023, 11.82116438070507778379948410018, 12.72610495171032290374555163714, 13.64826041661203036235922948515