L(s) = 1 | + (−1 − i)3-s + (1 − i)7-s + i·9-s − 2·21-s + (−1 − i)23-s − 2i·29-s + (1 + i)43-s + (−1 + i)47-s − i·49-s + (1 + i)63-s + (1 − i)67-s + 2i·69-s + 81-s + (1 + i)83-s + (−2 + 2i)87-s + ⋯ |
L(s) = 1 | + (−1 − i)3-s + (1 − i)7-s + i·9-s − 2·21-s + (−1 − i)23-s − 2i·29-s + (1 + i)43-s + (−1 + i)47-s − i·49-s + (1 + i)63-s + (1 − i)67-s + 2i·69-s + 81-s + (1 + i)83-s + (−2 + 2i)87-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.229 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.229 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7316422166\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7316422166\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (1 + i)T + iT^{2} \) |
| 7 | \( 1 + (-1 + i)T - iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + iT^{2} \) |
| 17 | \( 1 - iT^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (1 + i)T + iT^{2} \) |
| 29 | \( 1 + 2iT - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (-1 - i)T + iT^{2} \) |
| 47 | \( 1 + (1 - i)T - iT^{2} \) |
| 53 | \( 1 + iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + (-1 + i)T - iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + (-1 - i)T + iT^{2} \) |
| 89 | \( 1 - 2iT - T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.52182806991915867942435966588, −9.516285885690007470604571955858, −7.987549958995614787489586635325, −7.79309233068281090636853498539, −6.64426959537030984101543600395, −6.05031302786525693150766574450, −4.90110252422022193942073224709, −4.04655376704796702448425754963, −2.16891100401709272297954391108, −0.912779280286979310418994085698,
1.91087069452013848845759771743, 3.53643054532470293052896772089, 4.68241429286250276903957052486, 5.35118785830813710866323432898, 5.94671590199537883366208087967, 7.23989387664129141346164886590, 8.354335030273642507666476163441, 9.099879670111464566614379913831, 10.03268865522979731250990617072, 10.75221685985421843874095155583