L(s) = 1 | + (−1 − i)3-s + (1 − i)7-s + i·9-s − 2·21-s + (−1 − i)23-s − 2i·29-s + (1 + i)43-s + (−1 + i)47-s − i·49-s + (1 + i)63-s + (1 − i)67-s + 2i·69-s + 81-s + (1 + i)83-s + (−2 + 2i)87-s + ⋯ |
L(s) = 1 | + (−1 − i)3-s + (1 − i)7-s + i·9-s − 2·21-s + (−1 − i)23-s − 2i·29-s + (1 + i)43-s + (−1 + i)47-s − i·49-s + (1 + i)63-s + (1 − i)67-s + 2i·69-s + 81-s + (1 + i)83-s + (−2 + 2i)87-s + ⋯ |
Λ(s)=(=(800s/2ΓC(s)L(s)(−0.229+0.973i)Λ(1−s)
Λ(s)=(=(800s/2ΓC(s)L(s)(−0.229+0.973i)Λ(1−s)
Degree: |
2 |
Conductor: |
800
= 25⋅52
|
Sign: |
−0.229+0.973i
|
Analytic conductor: |
0.399252 |
Root analytic conductor: |
0.631863 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ800(193,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 800, ( :0), −0.229+0.973i)
|
Particular Values
L(21) |
≈ |
0.7316422166 |
L(21) |
≈ |
0.7316422166 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+(1+i)T+iT2 |
| 7 | 1+(−1+i)T−iT2 |
| 11 | 1+T2 |
| 13 | 1+iT2 |
| 17 | 1−iT2 |
| 19 | 1−T2 |
| 23 | 1+(1+i)T+iT2 |
| 29 | 1+2iT−T2 |
| 31 | 1+T2 |
| 37 | 1−iT2 |
| 41 | 1+T2 |
| 43 | 1+(−1−i)T+iT2 |
| 47 | 1+(1−i)T−iT2 |
| 53 | 1+iT2 |
| 59 | 1−T2 |
| 61 | 1+T2 |
| 67 | 1+(−1+i)T−iT2 |
| 71 | 1+T2 |
| 73 | 1+iT2 |
| 79 | 1−T2 |
| 83 | 1+(−1−i)T+iT2 |
| 89 | 1−2iT−T2 |
| 97 | 1−iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.52182806991915867942435966588, −9.516285885690007470604571955858, −7.987549958995614787489586635325, −7.79309233068281090636853498539, −6.64426959537030984101543600395, −6.05031302786525693150766574450, −4.90110252422022193942073224709, −4.04655376704796702448425754963, −2.16891100401709272297954391108, −0.912779280286979310418994085698,
1.91087069452013848845759771743, 3.53643054532470293052896772089, 4.68241429286250276903957052486, 5.35118785830813710866323432898, 5.94671590199537883366208087967, 7.23989387664129141346164886590, 8.354335030273642507666476163441, 9.099879670111464566614379913831, 10.03268865522979731250990617072, 10.75221685985421843874095155583