Properties

Label 2-800-5.3-c0-0-2
Degree $2$
Conductor $800$
Sign $-0.229 + 0.973i$
Analytic cond. $0.399252$
Root an. cond. $0.631863$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1 − i)3-s + (1 − i)7-s + i·9-s − 2·21-s + (−1 − i)23-s − 2i·29-s + (1 + i)43-s + (−1 + i)47-s i·49-s + (1 + i)63-s + (1 − i)67-s + 2i·69-s + 81-s + (1 + i)83-s + (−2 + 2i)87-s + ⋯
L(s)  = 1  + (−1 − i)3-s + (1 − i)7-s + i·9-s − 2·21-s + (−1 − i)23-s − 2i·29-s + (1 + i)43-s + (−1 + i)47-s i·49-s + (1 + i)63-s + (1 − i)67-s + 2i·69-s + 81-s + (1 + i)83-s + (−2 + 2i)87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.229 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.229 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(800\)    =    \(2^{5} \cdot 5^{2}\)
Sign: $-0.229 + 0.973i$
Analytic conductor: \(0.399252\)
Root analytic conductor: \(0.631863\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{800} (193, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 800,\ (\ :0),\ -0.229 + 0.973i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.7316422166\)
\(L(\frac12)\) \(\approx\) \(0.7316422166\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + (1 + i)T + iT^{2} \)
7 \( 1 + (-1 + i)T - iT^{2} \)
11 \( 1 + T^{2} \)
13 \( 1 + iT^{2} \)
17 \( 1 - iT^{2} \)
19 \( 1 - T^{2} \)
23 \( 1 + (1 + i)T + iT^{2} \)
29 \( 1 + 2iT - T^{2} \)
31 \( 1 + T^{2} \)
37 \( 1 - iT^{2} \)
41 \( 1 + T^{2} \)
43 \( 1 + (-1 - i)T + iT^{2} \)
47 \( 1 + (1 - i)T - iT^{2} \)
53 \( 1 + iT^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 + T^{2} \)
67 \( 1 + (-1 + i)T - iT^{2} \)
71 \( 1 + T^{2} \)
73 \( 1 + iT^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 + (-1 - i)T + iT^{2} \)
89 \( 1 - 2iT - T^{2} \)
97 \( 1 - iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.52182806991915867942435966588, −9.516285885690007470604571955858, −7.987549958995614787489586635325, −7.79309233068281090636853498539, −6.64426959537030984101543600395, −6.05031302786525693150766574450, −4.90110252422022193942073224709, −4.04655376704796702448425754963, −2.16891100401709272297954391108, −0.912779280286979310418994085698, 1.91087069452013848845759771743, 3.53643054532470293052896772089, 4.68241429286250276903957052486, 5.35118785830813710866323432898, 5.94671590199537883366208087967, 7.23989387664129141346164886590, 8.354335030273642507666476163441, 9.099879670111464566614379913831, 10.03268865522979731250990617072, 10.75221685985421843874095155583

Graph of the $Z$-function along the critical line