L(s) = 1 | − 4·3-s − 4·7-s + 8·9-s + 2·13-s + 10·17-s + 8·19-s + 16·21-s − 4·23-s − 12·27-s − 2·37-s − 8·39-s + 12·43-s + 4·47-s + 8·49-s − 40·51-s + 14·53-s − 32·57-s + 8·59-s − 8·61-s − 32·63-s + 20·67-s + 16·69-s + 6·73-s + 32·79-s + 23·81-s + 4·83-s − 8·91-s + ⋯ |
L(s) = 1 | − 2.30·3-s − 1.51·7-s + 8/3·9-s + 0.554·13-s + 2.42·17-s + 1.83·19-s + 3.49·21-s − 0.834·23-s − 2.30·27-s − 0.328·37-s − 1.28·39-s + 1.82·43-s + 0.583·47-s + 8/7·49-s − 5.60·51-s + 1.92·53-s − 4.23·57-s + 1.04·59-s − 1.02·61-s − 4.03·63-s + 2.44·67-s + 1.92·69-s + 0.702·73-s + 3.60·79-s + 23/9·81-s + 0.439·83-s − 0.838·91-s + ⋯ |
Λ(s)=(=(640000s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(640000s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
640000
= 210⋅54
|
Sign: |
1
|
Analytic conductor: |
40.8069 |
Root analytic conductor: |
2.52745 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 640000, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.8317099291 |
L(21) |
≈ |
0.8317099291 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
good | 3 | C22 | 1+4T+8T2+4pT3+p2T4 |
| 7 | C22 | 1+4T+8T2+4pT3+p2T4 |
| 11 | C2 | (1−pT2)2 |
| 13 | C2 | (1−6T+pT2)(1+4T+pT2) |
| 17 | C2 | (1−8T+pT2)(1−2T+pT2) |
| 19 | C2 | (1−4T+pT2)2 |
| 23 | C22 | 1+4T+8T2+4pT3+p2T4 |
| 29 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 31 | C22 | 1−46T2+p2T4 |
| 37 | C22 | 1+2T+2T2+2pT3+p2T4 |
| 41 | C2 | (1+pT2)2 |
| 43 | C22 | 1−12T+72T2−12pT3+p2T4 |
| 47 | C22 | 1−4T+8T2−4pT3+p2T4 |
| 53 | C22 | 1−14T+98T2−14pT3+p2T4 |
| 59 | C2 | (1−4T+pT2)2 |
| 61 | C2 | (1+4T+pT2)2 |
| 67 | C22 | 1−20T+200T2−20pT3+p2T4 |
| 71 | C22 | 1+2T2+p2T4 |
| 73 | C22 | 1−6T+18T2−6pT3+p2T4 |
| 79 | C2 | (1−16T+pT2)2 |
| 83 | C22 | 1−4T+8T2−4pT3+p2T4 |
| 89 | C2 | (1−pT2)2 |
| 97 | C22 | 1−6T+18T2−6pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.29261216253602200569395796978, −10.29114244288198554202836159454, −9.751561531843854565132887073834, −9.465245993447043182873358665702, −9.056792251200399634530463683178, −8.206740596615492220000420459678, −7.56452075924571639174983515610, −7.54254681243446590685683358450, −6.77680705173972987379947169767, −6.44681744869604256638195753490, −5.94787183488346952596562801812, −5.69385524670392918644676982756, −5.28655135622173376336904391238, −5.08995377658841635889391485991, −3.98157943307833483926616460479, −3.66404240530070806974758690128, −3.22293548106315928613307069977, −2.26682324829930236713447204304, −0.875958458013331180292750983529, −0.798051517344053497583917184647,
0.798051517344053497583917184647, 0.875958458013331180292750983529, 2.26682324829930236713447204304, 3.22293548106315928613307069977, 3.66404240530070806974758690128, 3.98157943307833483926616460479, 5.08995377658841635889391485991, 5.28655135622173376336904391238, 5.69385524670392918644676982756, 5.94787183488346952596562801812, 6.44681744869604256638195753490, 6.77680705173972987379947169767, 7.54254681243446590685683358450, 7.56452075924571639174983515610, 8.206740596615492220000420459678, 9.056792251200399634530463683178, 9.465245993447043182873358665702, 9.751561531843854565132887073834, 10.29114244288198554202836159454, 10.29261216253602200569395796978