Properties

Label 2-800-1.1-c3-0-40
Degree $2$
Conductor $800$
Sign $-1$
Analytic cond. $47.2015$
Root an. cond. $6.87033$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.76·3-s + 15.5·7-s − 4.30·9-s − 74.3·21-s − 207.·23-s + 149.·27-s + 306·29-s + 460.·41-s + 30.9·43-s − 643.·47-s − 99.7·49-s + 40.2·61-s − 67.1·63-s − 1.09e3·67-s + 990.·69-s − 594.·81-s + 1.14e3·83-s − 1.45e3·87-s − 1.38e3·89-s − 378·101-s − 1.98e3·103-s − 1.77e3·107-s − 1.97e3·109-s + ⋯
L(s)  = 1  − 0.916·3-s + 0.842·7-s − 0.159·9-s − 0.772·21-s − 1.88·23-s + 1.06·27-s + 1.95·29-s + 1.75·41-s + 0.109·43-s − 1.99·47-s − 0.290·49-s + 0.0844·61-s − 0.134·63-s − 1.99·67-s + 1.72·69-s − 0.815·81-s + 1.51·83-s − 1.79·87-s − 1.65·89-s − 0.372·101-s − 1.89·103-s − 1.59·107-s − 1.73·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(800\)    =    \(2^{5} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(47.2015\)
Root analytic conductor: \(6.87033\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 800,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 4.76T + 27T^{2} \)
7 \( 1 - 15.5T + 343T^{2} \)
11 \( 1 + 1.33e3T^{2} \)
13 \( 1 + 2.19e3T^{2} \)
17 \( 1 + 4.91e3T^{2} \)
19 \( 1 + 6.85e3T^{2} \)
23 \( 1 + 207.T + 1.21e4T^{2} \)
29 \( 1 - 306T + 2.43e4T^{2} \)
31 \( 1 + 2.97e4T^{2} \)
37 \( 1 + 5.06e4T^{2} \)
41 \( 1 - 460.T + 6.89e4T^{2} \)
43 \( 1 - 30.9T + 7.95e4T^{2} \)
47 \( 1 + 643.T + 1.03e5T^{2} \)
53 \( 1 + 1.48e5T^{2} \)
59 \( 1 + 2.05e5T^{2} \)
61 \( 1 - 40.2T + 2.26e5T^{2} \)
67 \( 1 + 1.09e3T + 3.00e5T^{2} \)
71 \( 1 + 3.57e5T^{2} \)
73 \( 1 + 3.89e5T^{2} \)
79 \( 1 + 4.93e5T^{2} \)
83 \( 1 - 1.14e3T + 5.71e5T^{2} \)
89 \( 1 + 1.38e3T + 7.04e5T^{2} \)
97 \( 1 + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.598496039081116197097180137503, −8.398494632412803378676961684892, −7.88140100415785314858468957853, −6.60320901499457661957472492358, −5.92468466338773291617714966358, −4.99958247131198918555662384359, −4.20623904874380482717792496637, −2.69985357930334609001843806263, −1.34296313056487185585076265782, 0, 1.34296313056487185585076265782, 2.69985357930334609001843806263, 4.20623904874380482717792496637, 4.99958247131198918555662384359, 5.92468466338773291617714966358, 6.60320901499457661957472492358, 7.88140100415785314858468957853, 8.398494632412803378676961684892, 9.598496039081116197097180137503

Graph of the $Z$-function along the critical line