Properties

Label 2-800-1.1-c3-0-56
Degree $2$
Conductor $800$
Sign $-1$
Analytic cond. $47.2015$
Root an. cond. $6.87033$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7.21·3-s + 7.21·7-s + 24.9·9-s − 43.2·11-s − 34·13-s − 114·17-s + 51.9·21-s − 209.·23-s − 14.4·27-s − 26·29-s − 100.·31-s − 312·33-s + 150·37-s − 245.·39-s + 342·41-s − 454.·43-s + 584.·47-s − 291·49-s − 822.·51-s + 262·53-s + 490.·59-s − 262·61-s + 180.·63-s − 497.·67-s − 1.50e3·69-s + 1.05e3·71-s − 682·73-s + ⋯
L(s)  = 1  + 1.38·3-s + 0.389·7-s + 0.925·9-s − 1.18·11-s − 0.725·13-s − 1.62·17-s + 0.540·21-s − 1.89·23-s − 0.102·27-s − 0.166·29-s − 0.584·31-s − 1.64·33-s + 0.666·37-s − 1.00·39-s + 1.30·41-s − 1.61·43-s + 1.81·47-s − 0.848·49-s − 2.25·51-s + 0.679·53-s + 1.08·59-s − 0.549·61-s + 0.360·63-s − 0.907·67-s − 2.63·69-s + 1.75·71-s − 1.09·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(800\)    =    \(2^{5} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(47.2015\)
Root analytic conductor: \(6.87033\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 800,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 7.21T + 27T^{2} \)
7 \( 1 - 7.21T + 343T^{2} \)
11 \( 1 + 43.2T + 1.33e3T^{2} \)
13 \( 1 + 34T + 2.19e3T^{2} \)
17 \( 1 + 114T + 4.91e3T^{2} \)
19 \( 1 + 6.85e3T^{2} \)
23 \( 1 + 209.T + 1.21e4T^{2} \)
29 \( 1 + 26T + 2.43e4T^{2} \)
31 \( 1 + 100.T + 2.97e4T^{2} \)
37 \( 1 - 150T + 5.06e4T^{2} \)
41 \( 1 - 342T + 6.89e4T^{2} \)
43 \( 1 + 454.T + 7.95e4T^{2} \)
47 \( 1 - 584.T + 1.03e5T^{2} \)
53 \( 1 - 262T + 1.48e5T^{2} \)
59 \( 1 - 490.T + 2.05e5T^{2} \)
61 \( 1 + 262T + 2.26e5T^{2} \)
67 \( 1 + 497.T + 3.00e5T^{2} \)
71 \( 1 - 1.05e3T + 3.57e5T^{2} \)
73 \( 1 + 682T + 3.89e5T^{2} \)
79 \( 1 - 201.T + 4.93e5T^{2} \)
83 \( 1 - 151.T + 5.71e5T^{2} \)
89 \( 1 + 630T + 7.04e5T^{2} \)
97 \( 1 - 966T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.343344605530336337508744796049, −8.506765984973223994049238319744, −7.891972398216309633844737399447, −7.20455728540037458276011241102, −5.90157241197174942214725569033, −4.72729778786927424373666589601, −3.83773918354454230414906100058, −2.53360295444243716703651142835, −2.07518152857865185989793599963, 0, 2.07518152857865185989793599963, 2.53360295444243716703651142835, 3.83773918354454230414906100058, 4.72729778786927424373666589601, 5.90157241197174942214725569033, 7.20455728540037458276011241102, 7.891972398216309633844737399447, 8.506765984973223994049238319744, 9.343344605530336337508744796049

Graph of the $Z$-function along the critical line