L(s) = 1 | + 7.21·3-s + 7.21·7-s + 24.9·9-s − 43.2·11-s − 34·13-s − 114·17-s + 51.9·21-s − 209.·23-s − 14.4·27-s − 26·29-s − 100.·31-s − 312·33-s + 150·37-s − 245.·39-s + 342·41-s − 454.·43-s + 584.·47-s − 291·49-s − 822.·51-s + 262·53-s + 490.·59-s − 262·61-s + 180.·63-s − 497.·67-s − 1.50e3·69-s + 1.05e3·71-s − 682·73-s + ⋯ |
L(s) = 1 | + 1.38·3-s + 0.389·7-s + 0.925·9-s − 1.18·11-s − 0.725·13-s − 1.62·17-s + 0.540·21-s − 1.89·23-s − 0.102·27-s − 0.166·29-s − 0.584·31-s − 1.64·33-s + 0.666·37-s − 1.00·39-s + 1.30·41-s − 1.61·43-s + 1.81·47-s − 0.848·49-s − 2.25·51-s + 0.679·53-s + 1.08·59-s − 0.549·61-s + 0.360·63-s − 0.907·67-s − 2.63·69-s + 1.75·71-s − 1.09·73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 - 7.21T + 27T^{2} \) |
| 7 | \( 1 - 7.21T + 343T^{2} \) |
| 11 | \( 1 + 43.2T + 1.33e3T^{2} \) |
| 13 | \( 1 + 34T + 2.19e3T^{2} \) |
| 17 | \( 1 + 114T + 4.91e3T^{2} \) |
| 19 | \( 1 + 6.85e3T^{2} \) |
| 23 | \( 1 + 209.T + 1.21e4T^{2} \) |
| 29 | \( 1 + 26T + 2.43e4T^{2} \) |
| 31 | \( 1 + 100.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 150T + 5.06e4T^{2} \) |
| 41 | \( 1 - 342T + 6.89e4T^{2} \) |
| 43 | \( 1 + 454.T + 7.95e4T^{2} \) |
| 47 | \( 1 - 584.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 262T + 1.48e5T^{2} \) |
| 59 | \( 1 - 490.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 262T + 2.26e5T^{2} \) |
| 67 | \( 1 + 497.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 1.05e3T + 3.57e5T^{2} \) |
| 73 | \( 1 + 682T + 3.89e5T^{2} \) |
| 79 | \( 1 - 201.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 151.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 630T + 7.04e5T^{2} \) |
| 97 | \( 1 - 966T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.343344605530336337508744796049, −8.506765984973223994049238319744, −7.891972398216309633844737399447, −7.20455728540037458276011241102, −5.90157241197174942214725569033, −4.72729778786927424373666589601, −3.83773918354454230414906100058, −2.53360295444243716703651142835, −2.07518152857865185989793599963, 0,
2.07518152857865185989793599963, 2.53360295444243716703651142835, 3.83773918354454230414906100058, 4.72729778786927424373666589601, 5.90157241197174942214725569033, 7.20455728540037458276011241102, 7.891972398216309633844737399447, 8.506765984973223994049238319744, 9.343344605530336337508744796049