L(s) = 1 | − 7.21i·3-s + 7.21i·7-s − 24.9·9-s − 43.2·11-s + 34i·13-s − 114i·17-s + 51.9·21-s + 209. i·23-s − 14.4i·27-s + 26·29-s − 100.·31-s + 312i·33-s + 150i·37-s + 245.·39-s + 342·41-s + ⋯ |
L(s) = 1 | − 1.38i·3-s + 0.389i·7-s − 0.925·9-s − 1.18·11-s + 0.725i·13-s − 1.62i·17-s + 0.540·21-s + 1.89i·23-s − 0.102i·27-s + 0.166·29-s − 0.584·31-s + 1.64i·33-s + 0.666i·37-s + 1.00·39-s + 1.30·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.194181137\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.194181137\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + 7.21iT - 27T^{2} \) |
| 7 | \( 1 - 7.21iT - 343T^{2} \) |
| 11 | \( 1 + 43.2T + 1.33e3T^{2} \) |
| 13 | \( 1 - 34iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 114iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 6.85e3T^{2} \) |
| 23 | \( 1 - 209. iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 26T + 2.43e4T^{2} \) |
| 31 | \( 1 + 100.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 150iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 342T + 6.89e4T^{2} \) |
| 43 | \( 1 - 454. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 584. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 262iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 490.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 262T + 2.26e5T^{2} \) |
| 67 | \( 1 + 497. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 1.05e3T + 3.57e5T^{2} \) |
| 73 | \( 1 - 682iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 201.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 151. iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 630T + 7.04e5T^{2} \) |
| 97 | \( 1 - 966iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.721158504659701292002600309470, −9.108334762914652067321396786676, −7.74257722824944976889985450998, −7.61493553087425545292083958595, −6.56790798161080948142092437747, −5.66602121809587128829935309799, −4.73244565037062254835258461224, −3.05730898651425979489855334745, −2.19082098171038456967365281350, −1.03848011832632045960713317062,
0.35838593777487912805694782091, 2.33389482330051400440407788869, 3.54692558895123923305297859825, 4.30495715744782972816984553624, 5.22702807906520805963327621027, 6.03589780721043224458436720510, 7.35584611855702110395088324291, 8.317960656626223762930139324684, 8.974672039193081665437386434501, 10.18358261225445468691064223952