L(s) = 1 | − 7.09i·3-s − 2.59·7-s + 30.6·9-s + 7.95·11-s − 54.6·13-s + 28.7i·17-s − 316.·19-s + 18.3i·21-s + 846.·23-s − 792. i·27-s + 766. i·29-s − 1.19e3i·31-s − 56.4i·33-s − 2.43e3·37-s + 387. i·39-s + ⋯ |
L(s) = 1 | − 0.788i·3-s − 0.0528·7-s + 0.377·9-s + 0.0657·11-s − 0.323·13-s + 0.0995i·17-s − 0.877·19-s + 0.0417i·21-s + 1.60·23-s − 1.08i·27-s + 0.911i·29-s − 1.24i·31-s − 0.0518i·33-s − 1.77·37-s + 0.255i·39-s + ⋯ |
Λ(s)=(=(800s/2ΓC(s)L(s)(−0.673+0.739i)Λ(5−s)
Λ(s)=(=(800s/2ΓC(s+2)L(s)(−0.673+0.739i)Λ(1−s)
Degree: |
2 |
Conductor: |
800
= 25⋅52
|
Sign: |
−0.673+0.739i
|
Analytic conductor: |
82.6959 |
Root analytic conductor: |
9.09373 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ800(399,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 800, ( :2), −0.673+0.739i)
|
Particular Values
L(25) |
≈ |
1.607460713 |
L(21) |
≈ |
1.607460713 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+7.09iT−81T2 |
| 7 | 1+2.59T+2.40e3T2 |
| 11 | 1−7.95T+1.46e4T2 |
| 13 | 1+54.6T+2.85e4T2 |
| 17 | 1−28.7iT−8.35e4T2 |
| 19 | 1+316.T+1.30e5T2 |
| 23 | 1−846.T+2.79e5T2 |
| 29 | 1−766.iT−7.07e5T2 |
| 31 | 1+1.19e3iT−9.23e5T2 |
| 37 | 1+2.43e3T+1.87e6T2 |
| 41 | 1−2.43e3T+2.82e6T2 |
| 43 | 1+2.33e3iT−3.41e6T2 |
| 47 | 1−2.19e3T+4.87e6T2 |
| 53 | 1−3.04e3T+7.89e6T2 |
| 59 | 1−455.T+1.21e7T2 |
| 61 | 1−3.92e3iT−1.38e7T2 |
| 67 | 1+4.82e3iT−2.01e7T2 |
| 71 | 1+874.iT−2.54e7T2 |
| 73 | 1+7.68e3iT−2.83e7T2 |
| 79 | 1−1.47e3iT−3.89e7T2 |
| 83 | 1+6.84e3iT−4.74e7T2 |
| 89 | 1+1.31e4T+6.27e7T2 |
| 97 | 1−8.60e3iT−8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.248030542842477559148453613467, −8.533066802558389513877072537429, −7.41035476256194823091553213319, −6.98009859892635282294553590092, −5.99752428890600522838191680446, −4.91701170020515475683888163234, −3.86180600085002960354515015943, −2.56072042166678735985661021499, −1.54523078427723293385305670668, −0.39038261935295367369265931664,
1.16741015853439745720503248061, 2.59176451860281281571697753741, 3.72031245515733009994228526741, 4.60230225093739911855845234045, 5.36778439548858794857056743187, 6.61658368272782366164825622900, 7.33376490005029591051742409363, 8.518966080863109593382840070589, 9.224243557780943530330925319441, 10.03093108620269586416554418019