Properties

Label 2-800-40.19-c4-0-55
Degree $2$
Conductor $800$
Sign $-0.673 + 0.739i$
Analytic cond. $82.6959$
Root an. cond. $9.09373$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7.09i·3-s − 2.59·7-s + 30.6·9-s + 7.95·11-s − 54.6·13-s + 28.7i·17-s − 316.·19-s + 18.3i·21-s + 846.·23-s − 792. i·27-s + 766. i·29-s − 1.19e3i·31-s − 56.4i·33-s − 2.43e3·37-s + 387. i·39-s + ⋯
L(s)  = 1  − 0.788i·3-s − 0.0528·7-s + 0.377·9-s + 0.0657·11-s − 0.323·13-s + 0.0995i·17-s − 0.877·19-s + 0.0417i·21-s + 1.60·23-s − 1.08i·27-s + 0.911i·29-s − 1.24i·31-s − 0.0518i·33-s − 1.77·37-s + 0.255i·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.673 + 0.739i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.673 + 0.739i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(800\)    =    \(2^{5} \cdot 5^{2}\)
Sign: $-0.673 + 0.739i$
Analytic conductor: \(82.6959\)
Root analytic conductor: \(9.09373\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{800} (399, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 800,\ (\ :2),\ -0.673 + 0.739i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.607460713\)
\(L(\frac12)\) \(\approx\) \(1.607460713\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 + 7.09iT - 81T^{2} \)
7 \( 1 + 2.59T + 2.40e3T^{2} \)
11 \( 1 - 7.95T + 1.46e4T^{2} \)
13 \( 1 + 54.6T + 2.85e4T^{2} \)
17 \( 1 - 28.7iT - 8.35e4T^{2} \)
19 \( 1 + 316.T + 1.30e5T^{2} \)
23 \( 1 - 846.T + 2.79e5T^{2} \)
29 \( 1 - 766. iT - 7.07e5T^{2} \)
31 \( 1 + 1.19e3iT - 9.23e5T^{2} \)
37 \( 1 + 2.43e3T + 1.87e6T^{2} \)
41 \( 1 - 2.43e3T + 2.82e6T^{2} \)
43 \( 1 + 2.33e3iT - 3.41e6T^{2} \)
47 \( 1 - 2.19e3T + 4.87e6T^{2} \)
53 \( 1 - 3.04e3T + 7.89e6T^{2} \)
59 \( 1 - 455.T + 1.21e7T^{2} \)
61 \( 1 - 3.92e3iT - 1.38e7T^{2} \)
67 \( 1 + 4.82e3iT - 2.01e7T^{2} \)
71 \( 1 + 874. iT - 2.54e7T^{2} \)
73 \( 1 + 7.68e3iT - 2.83e7T^{2} \)
79 \( 1 - 1.47e3iT - 3.89e7T^{2} \)
83 \( 1 + 6.84e3iT - 4.74e7T^{2} \)
89 \( 1 + 1.31e4T + 6.27e7T^{2} \)
97 \( 1 - 8.60e3iT - 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.248030542842477559148453613467, −8.533066802558389513877072537429, −7.41035476256194823091553213319, −6.98009859892635282294553590092, −5.99752428890600522838191680446, −4.91701170020515475683888163234, −3.86180600085002960354515015943, −2.56072042166678735985661021499, −1.54523078427723293385305670668, −0.39038261935295367369265931664, 1.16741015853439745720503248061, 2.59176451860281281571697753741, 3.72031245515733009994228526741, 4.60230225093739911855845234045, 5.36778439548858794857056743187, 6.61658368272782366164825622900, 7.33376490005029591051742409363, 8.518966080863109593382840070589, 9.224243557780943530330925319441, 10.03093108620269586416554418019

Graph of the $Z$-function along the critical line