L(s) = 1 | − 0.715i·3-s − 25.0·7-s + 80.4·9-s + 156.·11-s − 301.·13-s − 123. i·17-s + 322.·19-s + 17.9i·21-s − 45.9·23-s − 115. i·27-s + 1.08e3i·29-s − 1.62e3i·31-s − 112. i·33-s + 895.·37-s + 215. i·39-s + ⋯ |
L(s) = 1 | − 0.0795i·3-s − 0.512·7-s + 0.993·9-s + 1.29·11-s − 1.78·13-s − 0.427i·17-s + 0.892·19-s + 0.0407i·21-s − 0.0867·23-s − 0.158i·27-s + 1.28i·29-s − 1.69i·31-s − 0.102i·33-s + 0.653·37-s + 0.141i·39-s + ⋯ |
Λ(s)=(=(800s/2ΓC(s)L(s)(0.708+0.705i)Λ(5−s)
Λ(s)=(=(800s/2ΓC(s+2)L(s)(0.708+0.705i)Λ(1−s)
Degree: |
2 |
Conductor: |
800
= 25⋅52
|
Sign: |
0.708+0.705i
|
Analytic conductor: |
82.6959 |
Root analytic conductor: |
9.09373 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ800(399,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 800, ( :2), 0.708+0.705i)
|
Particular Values
L(25) |
≈ |
2.034688947 |
L(21) |
≈ |
2.034688947 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+0.715iT−81T2 |
| 7 | 1+25.0T+2.40e3T2 |
| 11 | 1−156.T+1.46e4T2 |
| 13 | 1+301.T+2.85e4T2 |
| 17 | 1+123.iT−8.35e4T2 |
| 19 | 1−322.T+1.30e5T2 |
| 23 | 1+45.9T+2.79e5T2 |
| 29 | 1−1.08e3iT−7.07e5T2 |
| 31 | 1+1.62e3iT−9.23e5T2 |
| 37 | 1−895.T+1.87e6T2 |
| 41 | 1+1.09e3T+2.82e6T2 |
| 43 | 1−950.iT−3.41e6T2 |
| 47 | 1−1.34e3T+4.87e6T2 |
| 53 | 1+709.T+7.89e6T2 |
| 59 | 1−4.46e3T+1.21e7T2 |
| 61 | 1−933.iT−1.38e7T2 |
| 67 | 1−4.01e3iT−2.01e7T2 |
| 71 | 1−3.55e3iT−2.54e7T2 |
| 73 | 1+5.29e3iT−2.83e7T2 |
| 79 | 1+1.14e4iT−3.89e7T2 |
| 83 | 1+6.58e3iT−4.74e7T2 |
| 89 | 1−6.28e3T+6.27e7T2 |
| 97 | 1+1.49e4iT−8.85e7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.707899746686926118435890858557, −8.978473012318413468621799929281, −7.54981710185149405398129821460, −7.13992860498343973061974818362, −6.21713238581939435189442469016, −5.00772284176586408764795866956, −4.17019143576564062745228996059, −3.05424301968779521143965222112, −1.81282084019503347503785846276, −0.58380119148057025799174220237,
0.906379640922925604765481294656, 2.11864254438893077523348528485, 3.41980841816687339471706027548, 4.34583874277681516729355595229, 5.26167498202264146752330379555, 6.54908155763620292019067944906, 7.07026288552170538815832849392, 7.996675253700443955113106551766, 9.250735943107217486552412427903, 9.733612844737845676560858383991